| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562 | <!doctype html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /><meta name="generator" content="pdoc 0.5.2" /><title>simulation API documentation</title><meta name="description" content="Definition of the Simulation class and the Galaxy constructor." /><link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'><link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet"><style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style><style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style><style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style></head><body><main><article id="content"><header><h1 class="title"><code>simulation</code> module</h1></header><section id="section-intro"><p>Definition of the Simulation class and the Galaxy constructor.</p><details class="source"><summary>Source code</summary><pre><code class="python">"""Definition of the Simulation class and the Galaxy constructor."""import osimport pickleimport numpy as npimport matplotlib.pyplot as pltfrom utils import random_unit_vectors, cascade_roundfrom distributions import PLUMMER, HERNQUIST, UNIFORM, EXP, NFWimport acceleration############################################################################################################################################################class Simulation:    """"Main class for the gravitational simulation.    Attributes:        r_vec (array): position of the particles in the current timestep.            Shape: (number of particles, 3)        rprev_vec (array): position of the particles in the previous timestep.            Shape: (number of particles, 3)        v_vec (array): velocity in the current timestep.            Shape: (number of particles, 3)        a_vec (array): acceleration in the current timestep.            Shape: (number of particles, 3)        mass (array): mass of each particle in the simulation.            Shape: (number of particles,)        type (array): non-unique identifier for each particle.            Shape: (number of particles,)        tracks (array): list of positions through the simulation for central            masses. Shape: (tracked particles, n+1, 3).        CONFIG (array): configuration used to create the simulation.            It will be saved along the state of the simulation.        dt (float): timestep of the simulation        n (int): current timestep. Initialized as n=0.        soft (float): softening length used by the simulation.        verbose (boolean): When True progress statements will be printed.    """    def __init__(self, dt, soft, verbose, CONFIG, method, **kwargs):        """Constructor for the Simulation class.        Arguments:            dt (float): timestep of the simulation            n (int): current timestep. Initialized as n=0.            soft (float): softening length used by the simulation.            verbose (bool): When True progress statements will be printed.            CONFIG (dict): configuration file used to create the simulation.            method (string): Optional. Algorithm to use when computing the                 gravitational forces. One of 'bruteForce', 'bruteForce_numba',                'bruteForce_numbaopt', 'bruteForce_CPP', 'barnesHut_CPP'.        """        self.n = 0        self.t = 0        self.dt = dt        self.soft = soft        self.verbose = verbose        self.CONFIG = CONFIG        # Initialize empty arrays for all necessary properties        self.r_vec = np.empty((0, 3))        self.v_vec = np.empty((0, 3))        self.a_vec = np.empty((0, 3))        self.mass = np.empty((0,))        self.type = np.empty((0, 2))        algorithms = {            'bruteForce': acceleration.bruteForce,            'bruteForceNumba': acceleration.bruteForceNumba,            'bruteForceNumbaOptimized': acceleration.bruteForceNumbaOptimized,            'bruteForceCPP': acceleration.bruteForceCPP,            'barnesHutCPP': acceleration.barnesHutCPP        }        try:            self.acceleration = algorithms[method]        except: raise Exception("Method '{}' unknown".format(method))    def add(self, body):        """Add a body to the simulation. It must expose the public attributes           body.r_vec, body.v_vec, body.a_vec, body.type, body.mass.        Arguments:            body: Object to be added to the simulation (e.g. a Galaxy object)        """        # Extend all relevant attributes by concatenating the body        for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:            simattr, bodyattr = getattr(self, name), getattr(body, name)            setattr(self, name, np.concatenate([simattr, bodyattr], axis=0))        # Order based on mass        order = np.argsort(-self.mass)        for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:             setattr(self, name, getattr(self, name)[order])        # Update the list of objects to keep track of        self.tracks = np.empty((np.sum(self.type[:,0]=='center'), 0, 3))    def step(self):        """Perform a single step of the simulation.           Makes use of a 4th order Verlet integrator.        """        # Calculate the acceleration        self.a_vec = self.acceleration(self.r_vec, self.mass, soft=self.soft)        # Update the state using the Verlet algorithm        # (A custom algorithm is written mainly for learning purposes)        self.r_vec, self.rprev_vec = (2*self.r_vec - self.rprev_vec            + self.a_vec * self.dt**2, self.r_vec)        self.n += 1        # Update tracks        self.tracks = np.concatenate([self.tracks,            self.r_vec[self.type[:,0]=='center'][:,np.newaxis]], axis=1)    def run(self, tmax, saveEvery, outputFolder, **kwargs):        """Run the galactic simulation.        Attributes:            tmax (float): Time to which the simulation will run to.                This is measured here since the start of the simulation,                not since pericenter.            saveEvery (int): The state is saved every saveEvery steps.            outputFolder (string): It will be saved to /data/outputFolder/        """        # When the simulation starts, intialize self.rprev_vec        self.rprev_vec = self.r_vec - self.v_vec * self.dt        if self.verbose: print('Simulation starting. Bon voyage!')        while(self.t < tmax):            self.step()            if(self.n % saveEvery == 0):                self.save('data/{}'.format(outputFolder))        print('Simulation complete.')    def save(self, outputFolder):        """Save the state of the simulation to the outputFolder.           Two files are saved:                sim{self.n}.pickle: serializing the state.                sim{self.n}.png: a simplified 2D plot of x, y.        """        # Create the output folder if it doesn't exist        if not os.path.exists(outputFolder): os.makedirs(outputFolder)        # Compute some useful quantities        # v_vec is not required by the integrator, but useful        self.v_vec = (self.r_vec - self.rprev_vec)/self.dt        self.t = self.n * self.dt # prevents numerical rounding errors        # Serialize state        file = open(outputFolder+'/data{}.pickle'.format(self.n), "wb")        pickle.dump({'r_vec': self.r_vec, 'v_vec': self.v_vec,                     'type': self.type, 'mass': self.mass,                     'CONFIG': self.CONFIG, 't': self.t,                     'tracks': self.tracks}, file)        # Save simplified plot of the current state.        # Its main use is to detect ill-behaved situations early on.        fig = plt.figure()        plt.xlim(-5, 5); plt.ylim(-5, 5); plt.axis('equal')        # Dark halo is plotted in red, disk in blue, bulge in green        PLTCON = [('dark', 'r', 0.3), ('disk', 'b', 1.0), ('bulge', 'g', 0.5)]        for type_, c, a in PLTCON:             plt.scatter(self.r_vec[self.type[:,0]==type_][:,0],                self.r_vec[self.type[:,0]==type_][:,1], s=0.1, c=c, alpha=a)        # Central mass as a magenta star         plt.scatter(self.r_vec[self.type[:,0]=='center'][:,0],            self.r_vec[self.type[:,0]=='center'][:,1], s=100, marker="*", c='m')        # Save to png file        fig.savefig(outputFolder+'/sim{}.png'.format(self.n), dpi=150)        plt.close(fig)    def project(self, theta, phi, view=0):        """Projects the 3D simulation onto a plane as viewed from the           direction described by the (theta, phi, view). Angles in radians.           (This is used by the simulated annealing algorithm)                Parameters:            theta (float): polar angle.            phi (float): azimuthal angle.            view (float): rotation along line of sight.        """        M1 = np.array([[np.cos(phi), np.sin(phi), 0],                       [-np.sin(phi), np.cos(phi), 0],                       [0, 0, 1]])        M2 = np.array([[1, 0, 0],                       [0, np.cos(theta), np.sin(theta)],                       [0, -np.sin(theta), np.cos(theta)]])        M3 = np.array([[np.cos(view), np.sin(view), 0],                       [-np.sin(view), np.cos(view), 0],                       [0, 0, 1]])        M = np.matmul(M1, np.matmul(M2, M3)) # combine rotations        r = np.tensordot(self.r_vec, M, axes=[1, 0])        return r[:,0:2]    def setOrbit(self, galaxy1, galaxy2, e, rmin, R0):        """Sets the two galaxies galaxy1, galaxy2 in an orbit.        Parameters:            galaxy1 (Galaxy): 1st galaxy (main)            galaxy2 (Galaxy): 2nd galaxy (companion)            e: eccentricity of the orbit            rmin: distance of closest approach            R0: initial separation        """        m1, m2 = np.sum(galaxy1.mass), np.sum(galaxy2.mass)        # Relevant formulae:        # $r_0 = r (1 + e) \cos(\phi)$, where $r_0$ ($\neq R_0$) is the semi-latus rectum        # $r_0 = r_\textup{min} (1 + e)$        # $v^2 = G M (2/r - 1/a)$, where a is the semimajor axis        # Solve the reduced two-body problem with reduced mass $\mu$ (mu)        M = m1 + m2        r0 = rmin * (1 + e)        try:            phi = np.arccos((r0/R0 - 1) / e) # inverting the orbit equation            phi = -np.abs(phi) # Choose negative (incoming) angle            ainv = (1 - e) / rmin # ainv = $1/a$, as a may be infinite            v = np.sqrt(M * (2/R0 - ainv))            # Finally, calculate the angle of motion. angle = tan(dy/dx)            # $dy/dx = ((dr/d\phi) sin(\phi) + r \cos(\phi))/((dr/d\phi) cos(\phi) - r \sin(\phi))$            dy = R0/r0 * e * np.sin(phi)**2 + np.cos(phi)            dx = R0/r0 * e * np.sin(phi) * np.cos(phi) - np.sin(phi)            vangle = np.arctan2(dy, dx)        except: raise Exception('''The orbital parameters cannot be satisfied.            For elliptical orbits check that R0 is posible (<rmax).''')        # We now need the actual motion of each body        R_vec = np.array([[R0*np.cos(phi), R0*np.sin(phi), 0.]])        V_vec = np.array([[v*np.cos(vangle), v*np.sin(vangle), 0.]])        galaxy1.r_vec += m2/M * R_vec        galaxy1.v_vec += m2/M * V_vec        galaxy2.r_vec += -m1/M * R_vec        galaxy2.v_vec += -m1/M * V_vec        # Explicitely add the galaxies to the simulation        self.add(galaxy1)        self.add(galaxy2)        if self.verbose: print('Galaxies set in orbit.')############################################################################################################################################################class Galaxy():    """"Helper class for creating galaxies.    Attributes:        r_vec (array): position of the particles in the current timestep.            Shape: (number of particles, 3)        v_vec (array): velocity in the current timestep.            Shape: (number of particles, 3)        a_vec (array): acceleration in the current timestep.            Shape: (number of particles, 3)        mass (array): mass of each particle in the simulation.            Shape: (number of particles,)        type (array): non-unique identifier for each particle.            Shape: (number of particles,)    """    def __init__(self, orientation, centralMass, bulge, disk, halo, sim):        """Constructor for the Galaxy class.           Parameters:                orientation (tupple): (inclination i, argument of pericenter w)                centralMass (float): mass at the center of the galaxy                bulge (dict): passed to the addBulge method.                disk (dict): passed to the addDisk method.                halo (dict): passed to the addHalo method.                sim (Simulation): simulation object        """        if sim.verbose: print('Initializing galaxy')        # Build the central mass        self.r_vec = np.zeros((1, 3))        self.v_vec = np.zeros((1, 3))        self.a_vec = np.zeros((1, 3))        self.mass = np.array([centralMass])        self.type = np.array([['center', 0]])        # Build the other components        self.addBulge(**bulge)        if sim.verbose: print('Bulge created.')        self.addDisk(**disk)        if sim.verbose: print('Disk created.')        self.addHalo(**halo)        if sim.verbose: print('Halo created.')        # Correct particles velocities to generate circular orbits        # $a_\textup{centripetal} = v^2/r$        a_vec = sim.acceleration(self.r_vec, self.mass, soft=sim.soft)        a = np.linalg.norm(a_vec, axis=-1, keepdims=True)        r = np.linalg.norm(self.r_vec, axis=-1, keepdims=True)        v = np.linalg.norm(self.v_vec[1:], axis=-1, keepdims=True)        direction_unit = self.v_vec[1:]/v        # Set orbital velocities (except for central mass)        self.v_vec[1:] = np.sqrt(a[1:] * r[1:]) * direction_unit        self.a_vec = np.zeros_like(self.r_vec)        # Rotate the galaxy into its correct orientation        self.rotate(*(np.array(orientation)/360 * 2*np.pi))        if sim.verbose: print('Galaxy set in rotation and oriented.')    def addBulge(self, model, totalMass, particles, l):        """Adds a bulge to the galaxy.            Parameters:                model (string): parametrization of the bulge.                    'plummer' and 'hernquist' are supported.                totalMass (float): total mass of the bulge                particles (int): number of particles in the bulge                l (float): characteristic length scale of the model.        """        if particles == 0: return None        # Divide the mass equally among all particles        mass = np.ones(particles) * totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Create particles according to the radial distribution from model        if model == 'plummer':            r = PLUMMER.ppf(np.random.rand(particles), scale=l)        elif model == 'hernquist':            r = HERNQUIST.ppf(np.random.rand(particles), scale=l)        else: raise Exception("""Bulge distribution not allowed.                    'plummer' and 'hernquist' are the supported values""")        r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Set them orbitting along random directions normal to r_vec        v_vec = np.cross(r_vec, random_unit_vectors(size=particles))        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)        # Label the particles        type_ = [['bulge', 0]]*particles        self.type = np.concatenate([self.type, type_], axis=0)    def addDisk(self, model, totalMass, particles, l):        """Adds a disk to the galaxy.            Parameters:                model (string): parametrization of the disk.                    'rings', 'uniform' and 'exp' are supported.                totalMass (float): total mass of the bulge                particles (int): number of particles in the bulge                l: fot 'exp' and 'uniform' characteristic length of the                    model. For 'rings' tupple of the form (inner radius,                    outer radius, number of rings)        """        if particles == 0: return None        # Create particles according to the radial distribution from model        if model == 'uniform':            r = UNIFORM.ppf(np.random.rand(particles), scale=l)            type_ = [['disk', 0]]*particles            r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')            self.type = np.concatenate([self.type, type_], axis=0)        elif model == 'rings':            # l = [inner radius, outter radius, number of rings]            distances = np.linspace(*l)            # Aim for roughly constant areal density            # Cascade rounding preserves the total number of particles            perRing = cascade_round(particles * distances / np.sum(distances))            particles = int(np.sum(perRing)) # prevents numerical errors            r_vec = np.empty((0, 3))            for d, n, i in zip(distances, perRing, range(l[2])):                type_ = [['disk', i+1]]*int(n)                self.type = np.concatenate([self.type, type_], axis=0)                phi = np.linspace(0, 2 * np.pi, n, endpoint=False)                ringr = d * np.array([[np.cos(i), np.sin(i), 0] for i in phi])                r_vec = np.concatenate([r_vec, ringr], axis=0)        elif model == 'exp':            r = EXP.ppf(np.random.rand(particles), scale=l)            r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')            type_ = [['disk', 0]]*particles            self.type = np.concatenate([self.type, type_], axis=0)        else:            raise Exception("""Disk distribution not allowed.                    'uniform', 'rings' and 'exp' are the supported values""")        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Divide the mass equally among all particles        mass = np.ones(particles) * totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Set them orbitting along the spin plane        v_vec = np.cross(r_vec, [0, 0, 1])        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)    def addHalo(self, model, totalMass, particles, rs):        """Adds a halo to the galaxy.            Parameters:                model (string): parametrization of the halo.                    Only 'NFW' is supported.                totalMass (float): total mass of the halo                particles (int): number of particles in the halo                rs (float): characteristic length scale of the NFW profile.        """        if particles == 0: return None        # Divide the mass equally among all particles        mass = np.ones(particles)*totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Create particles according to the radial distribution from model        if model == 'NFW':            r = NFW.ppf(np.random.rand(particles), scale=rs)        else: raise Exception("""Bulge distribution not allowed.                    'plummer' and 'hernquist' are the supported values""")        r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Orbit along random directions normal to the radial vector        v_vec = np.cross(r_vec, random_unit_vectors(size=particles))        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)        # Label the particles        type_ = [['dark'], 0]*particles        self.type = np.concatenate([self.type, type_], axis=0)    def rotate(self, theta, phi):        """Rotates the galaxy so that its spin is along the (theta, phi)           direction.        Parameters:            theta (float): polar angle.            phi (float): azimuthal angle.        """        M1 = np.array([[1, 0, 0],                       [0, np.cos(theta), np.sin(theta)],                       [0, -np.sin(theta), np.cos(theta)]])        M2 = np.array([[np.cos(phi), np.sin(phi), 0],                       [-np.sin(phi), np.cos(phi), 0],                       [0, 0, 1]])        M = np.matmul(M1, M2) # combine rotations        self.r_vec = np.tensordot(self.r_vec, M, axes=[1, 0])        self.v_vec = np.tensordot(self.v_vec, M, axes=[1, 0])</code></pre></details></section><section></section><section></section><section></section><section><h2 class="section-title" id="header-classes">Classes</h2><dl><dt id="simulation.Galaxy"><code class="flex name class"><span>class <span class="ident">Galaxy</span></span></code></dt><dd><section class="desc"><p>"Helper class for creating galaxies.</p><h2 id="attributes">Attributes</h2><dl><dt><strong><code>r_vec</code></strong> : <code>array</code></dt><dd>position of the particles in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>v_vec</code></strong> : <code>array</code></dt><dd>velocity in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>a_vec</code></strong> : <code>array</code></dt><dd>acceleration in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>mass</code></strong> : <code>array</code></dt><dd>mass of each particle in the simulation.Shape: (number of particles,)</dd><dt><strong><code>type</code></strong> : <code>array</code></dt><dd>non-unique identifier for each particle.Shape: (number of particles,)</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">class Galaxy():    """"Helper class for creating galaxies.    Attributes:        r_vec (array): position of the particles in the current timestep.            Shape: (number of particles, 3)        v_vec (array): velocity in the current timestep.            Shape: (number of particles, 3)        a_vec (array): acceleration in the current timestep.            Shape: (number of particles, 3)        mass (array): mass of each particle in the simulation.            Shape: (number of particles,)        type (array): non-unique identifier for each particle.            Shape: (number of particles,)    """    def __init__(self, orientation, centralMass, bulge, disk, halo, sim):        """Constructor for the Galaxy class.           Parameters:                orientation (tupple): (inclination i, argument of pericenter w)                centralMass (float): mass at the center of the galaxy                bulge (dict): passed to the addBulge method.                disk (dict): passed to the addDisk method.                halo (dict): passed to the addHalo method.                sim (Simulation): simulation object        """        if sim.verbose: print('Initializing galaxy')        # Build the central mass        self.r_vec = np.zeros((1, 3))        self.v_vec = np.zeros((1, 3))        self.a_vec = np.zeros((1, 3))        self.mass = np.array([centralMass])        self.type = np.array([['center', 0]])        # Build the other components        self.addBulge(**bulge)        if sim.verbose: print('Bulge created.')        self.addDisk(**disk)        if sim.verbose: print('Disk created.')        self.addHalo(**halo)        if sim.verbose: print('Halo created.')        # Correct particles velocities to generate circular orbits        # $a_\textup{centripetal} = v^2/r$        a_vec = sim.acceleration(self.r_vec, self.mass, soft=sim.soft)        a = np.linalg.norm(a_vec, axis=-1, keepdims=True)        r = np.linalg.norm(self.r_vec, axis=-1, keepdims=True)        v = np.linalg.norm(self.v_vec[1:], axis=-1, keepdims=True)        direction_unit = self.v_vec[1:]/v        # Set orbital velocities (except for central mass)        self.v_vec[1:] = np.sqrt(a[1:] * r[1:]) * direction_unit        self.a_vec = np.zeros_like(self.r_vec)        # Rotate the galaxy into its correct orientation        self.rotate(*(np.array(orientation)/360 * 2*np.pi))        if sim.verbose: print('Galaxy set in rotation and oriented.')    def addBulge(self, model, totalMass, particles, l):        """Adds a bulge to the galaxy.            Parameters:                model (string): parametrization of the bulge.                    'plummer' and 'hernquist' are supported.                totalMass (float): total mass of the bulge                particles (int): number of particles in the bulge                l (float): characteristic length scale of the model.        """        if particles == 0: return None        # Divide the mass equally among all particles        mass = np.ones(particles) * totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Create particles according to the radial distribution from model        if model == 'plummer':            r = PLUMMER.ppf(np.random.rand(particles), scale=l)        elif model == 'hernquist':            r = HERNQUIST.ppf(np.random.rand(particles), scale=l)        else: raise Exception("""Bulge distribution not allowed.                    'plummer' and 'hernquist' are the supported values""")        r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Set them orbitting along random directions normal to r_vec        v_vec = np.cross(r_vec, random_unit_vectors(size=particles))        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)        # Label the particles        type_ = [['bulge', 0]]*particles        self.type = np.concatenate([self.type, type_], axis=0)    def addDisk(self, model, totalMass, particles, l):        """Adds a disk to the galaxy.            Parameters:                model (string): parametrization of the disk.                    'rings', 'uniform' and 'exp' are supported.                totalMass (float): total mass of the bulge                particles (int): number of particles in the bulge                l: fot 'exp' and 'uniform' characteristic length of the                    model. For 'rings' tupple of the form (inner radius,                    outer radius, number of rings)        """        if particles == 0: return None        # Create particles according to the radial distribution from model        if model == 'uniform':            r = UNIFORM.ppf(np.random.rand(particles), scale=l)            type_ = [['disk', 0]]*particles            r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')            self.type = np.concatenate([self.type, type_], axis=0)        elif model == 'rings':            # l = [inner radius, outter radius, number of rings]            distances = np.linspace(*l)            # Aim for roughly constant areal density            # Cascade rounding preserves the total number of particles            perRing = cascade_round(particles * distances / np.sum(distances))            particles = int(np.sum(perRing)) # prevents numerical errors            r_vec = np.empty((0, 3))            for d, n, i in zip(distances, perRing, range(l[2])):                type_ = [['disk', i+1]]*int(n)                self.type = np.concatenate([self.type, type_], axis=0)                phi = np.linspace(0, 2 * np.pi, n, endpoint=False)                ringr = d * np.array([[np.cos(i), np.sin(i), 0] for i in phi])                r_vec = np.concatenate([r_vec, ringr], axis=0)        elif model == 'exp':            r = EXP.ppf(np.random.rand(particles), scale=l)            r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')            type_ = [['disk', 0]]*particles            self.type = np.concatenate([self.type, type_], axis=0)        else:            raise Exception("""Disk distribution not allowed.                    'uniform', 'rings' and 'exp' are the supported values""")        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Divide the mass equally among all particles        mass = np.ones(particles) * totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Set them orbitting along the spin plane        v_vec = np.cross(r_vec, [0, 0, 1])        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)    def addHalo(self, model, totalMass, particles, rs):        """Adds a halo to the galaxy.            Parameters:                model (string): parametrization of the halo.                    Only 'NFW' is supported.                totalMass (float): total mass of the halo                particles (int): number of particles in the halo                rs (float): characteristic length scale of the NFW profile.        """        if particles == 0: return None        # Divide the mass equally among all particles        mass = np.ones(particles)*totalMass/particles        self.mass = np.concatenate([self.mass, mass], axis=0)        # Create particles according to the radial distribution from model        if model == 'NFW':            r = NFW.ppf(np.random.rand(particles), scale=rs)        else: raise Exception("""Bulge distribution not allowed.                    'plummer' and 'hernquist' are the supported values""")        r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)        self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)        # Orbit along random directions normal to the radial vector        v_vec = np.cross(r_vec, random_unit_vectors(size=particles))        self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)        # Label the particles        type_ = [['dark'], 0]*particles        self.type = np.concatenate([self.type, type_], axis=0)    def rotate(self, theta, phi):        """Rotates the galaxy so that its spin is along the (theta, phi)           direction.        Parameters:            theta (float): polar angle.            phi (float): azimuthal angle.        """        M1 = np.array([[1, 0, 0],                       [0, np.cos(theta), np.sin(theta)],                       [0, -np.sin(theta), np.cos(theta)]])        M2 = np.array([[np.cos(phi), np.sin(phi), 0],                       [-np.sin(phi), np.cos(phi), 0],                       [0, 0, 1]])        M = np.matmul(M1, M2) # combine rotations        self.r_vec = np.tensordot(self.r_vec, M, axes=[1, 0])        self.v_vec = np.tensordot(self.v_vec, M, axes=[1, 0])</code></pre></details><h3>Methods</h3><dl><dt id="simulation.Galaxy.__init__"><code class="name flex"><span>def <span class="ident">__init__</span></span>(<span>self, orientation, centralMass, bulge, disk, halo, sim)</span></code></dt><dd><section class="desc"><p>Constructor for the Galaxy class.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>orientation</code></strong> : <code>tupple</code></dt><dd>(inclination i, argument of pericenter w)</dd><dt><strong><code>centralMass</code></strong> : <code>float</code></dt><dd>mass at the center of the galaxy</dd><dt><strong><code>bulge</code></strong> : <code>dict</code></dt><dd>passed to the addBulge method.</dd><dt><strong><code>disk</code></strong> : <code>dict</code></dt><dd>passed to the addDisk method.</dd><dt><strong><code>halo</code></strong> : <code>dict</code></dt><dd>passed to the addHalo method.</dd><dt><strong><code>sim</code></strong> : <a title="simulation.Simulation" href="#simulation.Simulation"><code>Simulation</code></a></dt><dd>simulation object</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def __init__(self, orientation, centralMass, bulge, disk, halo, sim):    """Constructor for the Galaxy class.       Parameters:            orientation (tupple): (inclination i, argument of pericenter w)            centralMass (float): mass at the center of the galaxy            bulge (dict): passed to the addBulge method.            disk (dict): passed to the addDisk method.            halo (dict): passed to the addHalo method.            sim (Simulation): simulation object    """    if sim.verbose: print('Initializing galaxy')    # Build the central mass    self.r_vec = np.zeros((1, 3))    self.v_vec = np.zeros((1, 3))    self.a_vec = np.zeros((1, 3))    self.mass = np.array([centralMass])    self.type = np.array([['center', 0]])    # Build the other components    self.addBulge(**bulge)    if sim.verbose: print('Bulge created.')    self.addDisk(**disk)    if sim.verbose: print('Disk created.')    self.addHalo(**halo)    if sim.verbose: print('Halo created.')    # Correct particles velocities to generate circular orbits    # $a_\textup{centripetal} = v^2/r$    a_vec = sim.acceleration(self.r_vec, self.mass, soft=sim.soft)    a = np.linalg.norm(a_vec, axis=-1, keepdims=True)    r = np.linalg.norm(self.r_vec, axis=-1, keepdims=True)    v = np.linalg.norm(self.v_vec[1:], axis=-1, keepdims=True)    direction_unit = self.v_vec[1:]/v    # Set orbital velocities (except for central mass)    self.v_vec[1:] = np.sqrt(a[1:] * r[1:]) * direction_unit    self.a_vec = np.zeros_like(self.r_vec)    # Rotate the galaxy into its correct orientation    self.rotate(*(np.array(orientation)/360 * 2*np.pi))    if sim.verbose: print('Galaxy set in rotation and oriented.')</code></pre></details></dd><dt id="simulation.Galaxy.addBulge"><code class="name flex"><span>def <span class="ident">addBulge</span></span>(<span>self, model, totalMass, particles, l)</span></code></dt><dd><section class="desc"><p>Adds a bulge to the galaxy.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>model</code></strong> : <code>string</code></dt><dd>parametrization of the bulge.'plummer' and 'hernquist' are supported.</dd><dt><strong><code>totalMass</code></strong> : <code>float</code></dt><dd>total mass of the bulge</dd><dt><strong><code>particles</code></strong> : <code>int</code></dt><dd>number of particles in the bulge</dd><dt><strong><code>l</code></strong> : <code>float</code></dt><dd>characteristic length scale of the model.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def addBulge(self, model, totalMass, particles, l):    """Adds a bulge to the galaxy.        Parameters:            model (string): parametrization of the bulge.                'plummer' and 'hernquist' are supported.            totalMass (float): total mass of the bulge            particles (int): number of particles in the bulge            l (float): characteristic length scale of the model.    """    if particles == 0: return None    # Divide the mass equally among all particles    mass = np.ones(particles) * totalMass/particles    self.mass = np.concatenate([self.mass, mass], axis=0)    # Create particles according to the radial distribution from model    if model == 'plummer':        r = PLUMMER.ppf(np.random.rand(particles), scale=l)    elif model == 'hernquist':        r = HERNQUIST.ppf(np.random.rand(particles), scale=l)    else: raise Exception("""Bulge distribution not allowed.                'plummer' and 'hernquist' are the supported values""")    r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)    self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)    # Set them orbitting along random directions normal to r_vec    v_vec = np.cross(r_vec, random_unit_vectors(size=particles))    self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)    # Label the particles    type_ = [['bulge', 0]]*particles    self.type = np.concatenate([self.type, type_], axis=0)</code></pre></details></dd><dt id="simulation.Galaxy.addDisk"><code class="name flex"><span>def <span class="ident">addDisk</span></span>(<span>self, model, totalMass, particles, l)</span></code></dt><dd><section class="desc"><p>Adds a disk to the galaxy.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>model</code></strong> : <code>string</code></dt><dd>parametrization of the disk.'rings', 'uniform' and 'exp' are supported.</dd><dt><strong><code>totalMass</code></strong> : <code>float</code></dt><dd>total mass of the bulge</dd><dt><strong><code>particles</code></strong> : <code>int</code></dt><dd>number of particles in the bulge</dd><dt><strong><code>l</code></strong></dt><dd>fot 'exp' and 'uniform' characteristic length of themodel. For 'rings' tupple of the form (inner radius,outer radius, number of rings)</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def addDisk(self, model, totalMass, particles, l):    """Adds a disk to the galaxy.        Parameters:            model (string): parametrization of the disk.                'rings', 'uniform' and 'exp' are supported.            totalMass (float): total mass of the bulge            particles (int): number of particles in the bulge            l: fot 'exp' and 'uniform' characteristic length of the                model. For 'rings' tupple of the form (inner radius,                outer radius, number of rings)    """    if particles == 0: return None    # Create particles according to the radial distribution from model    if model == 'uniform':        r = UNIFORM.ppf(np.random.rand(particles), scale=l)        type_ = [['disk', 0]]*particles        r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')        self.type = np.concatenate([self.type, type_], axis=0)    elif model == 'rings':        # l = [inner radius, outter radius, number of rings]        distances = np.linspace(*l)        # Aim for roughly constant areal density        # Cascade rounding preserves the total number of particles        perRing = cascade_round(particles * distances / np.sum(distances))        particles = int(np.sum(perRing)) # prevents numerical errors        r_vec = np.empty((0, 3))        for d, n, i in zip(distances, perRing, range(l[2])):            type_ = [['disk', i+1]]*int(n)            self.type = np.concatenate([self.type, type_], axis=0)            phi = np.linspace(0, 2 * np.pi, n, endpoint=False)            ringr = d * np.array([[np.cos(i), np.sin(i), 0] for i in phi])            r_vec = np.concatenate([r_vec, ringr], axis=0)    elif model == 'exp':        r = EXP.ppf(np.random.rand(particles), scale=l)        r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')        type_ = [['disk', 0]]*particles        self.type = np.concatenate([self.type, type_], axis=0)    else:        raise Exception("""Disk distribution not allowed.                'uniform', 'rings' and 'exp' are the supported values""")    self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)    # Divide the mass equally among all particles    mass = np.ones(particles) * totalMass/particles    self.mass = np.concatenate([self.mass, mass], axis=0)    # Set them orbitting along the spin plane    v_vec = np.cross(r_vec, [0, 0, 1])    self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)</code></pre></details></dd><dt id="simulation.Galaxy.addHalo"><code class="name flex"><span>def <span class="ident">addHalo</span></span>(<span>self, model, totalMass, particles, rs)</span></code></dt><dd><section class="desc"><p>Adds a halo to the galaxy.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>model</code></strong> : <code>string</code></dt><dd>parametrization of the halo.Only 'NFW' is supported.</dd><dt><strong><code>totalMass</code></strong> : <code>float</code></dt><dd>total mass of the halo</dd><dt><strong><code>particles</code></strong> : <code>int</code></dt><dd>number of particles in the halo</dd><dt><strong><code>rs</code></strong> : <code>float</code></dt><dd>characteristic length scale of the NFW profile.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def addHalo(self, model, totalMass, particles, rs):    """Adds a halo to the galaxy.        Parameters:            model (string): parametrization of the halo.                Only 'NFW' is supported.            totalMass (float): total mass of the halo            particles (int): number of particles in the halo            rs (float): characteristic length scale of the NFW profile.    """    if particles == 0: return None    # Divide the mass equally among all particles    mass = np.ones(particles)*totalMass/particles    self.mass = np.concatenate([self.mass, mass], axis=0)    # Create particles according to the radial distribution from model    if model == 'NFW':        r = NFW.ppf(np.random.rand(particles), scale=rs)    else: raise Exception("""Bulge distribution not allowed.                'plummer' and 'hernquist' are the supported values""")    r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)    self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)    # Orbit along random directions normal to the radial vector    v_vec = np.cross(r_vec, random_unit_vectors(size=particles))    self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)    # Label the particles    type_ = [['dark'], 0]*particles    self.type = np.concatenate([self.type, type_], axis=0)</code></pre></details></dd><dt id="simulation.Galaxy.rotate"><code class="name flex"><span>def <span class="ident">rotate</span></span>(<span>self, theta, phi)</span></code></dt><dd><section class="desc"><p>Rotates the galaxy so that its spin is along the (theta, phi)direction.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>theta</code></strong> : <code>float</code></dt><dd>polar angle.</dd><dt><strong><code>phi</code></strong> : <code>float</code></dt><dd>azimuthal angle.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def rotate(self, theta, phi):    """Rotates the galaxy so that its spin is along the (theta, phi)       direction.    Parameters:        theta (float): polar angle.        phi (float): azimuthal angle.    """    M1 = np.array([[1, 0, 0],                   [0, np.cos(theta), np.sin(theta)],                   [0, -np.sin(theta), np.cos(theta)]])    M2 = np.array([[np.cos(phi), np.sin(phi), 0],                   [-np.sin(phi), np.cos(phi), 0],                   [0, 0, 1]])    M = np.matmul(M1, M2) # combine rotations    self.r_vec = np.tensordot(self.r_vec, M, axes=[1, 0])    self.v_vec = np.tensordot(self.v_vec, M, axes=[1, 0])</code></pre></details></dd></dl></dd><dt id="simulation.Simulation"><code class="flex name class"><span>class <span class="ident">Simulation</span></span></code></dt><dd><section class="desc"><p>"Main class for the gravitational simulation.</p><h2 id="attributes">Attributes</h2><dl><dt><strong><code>r_vec</code></strong> : <code>array</code></dt><dd>position of the particles in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>rprev_vec</code></strong> : <code>array</code></dt><dd>position of the particles in the previous timestep.Shape: (number of particles, 3)</dd><dt><strong><code>v_vec</code></strong> : <code>array</code></dt><dd>velocity in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>a_vec</code></strong> : <code>array</code></dt><dd>acceleration in the current timestep.Shape: (number of particles, 3)</dd><dt><strong><code>mass</code></strong> : <code>array</code></dt><dd>mass of each particle in the simulation.Shape: (number of particles,)</dd><dt><strong><code>type</code></strong> : <code>array</code></dt><dd>non-unique identifier for each particle.Shape: (number of particles,)</dd><dt><strong><code>tracks</code></strong> : <code>array</code></dt><dd>list of positions through the simulation for centralmasses. Shape: (tracked particles, n+1, 3).</dd><dt><strong><code>CONFIG</code></strong> : <code>array</code></dt><dd>configuration used to create the simulation.It will be saved along the state of the simulation.</dd><dt><strong><code>dt</code></strong> : <code>float</code></dt><dd>timestep of the simulation</dd><dt><strong><code>n</code></strong> : <code>int</code></dt><dd>current timestep. Initialized as n=0.</dd><dt><strong><code>soft</code></strong> : <code>float</code></dt><dd>softening length used by the simulation.</dd><dt><strong><code>verbose</code></strong> : <code>boolean</code></dt><dd>When True progress statements will be printed.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">class Simulation:    """"Main class for the gravitational simulation.    Attributes:        r_vec (array): position of the particles in the current timestep.            Shape: (number of particles, 3)        rprev_vec (array): position of the particles in the previous timestep.            Shape: (number of particles, 3)        v_vec (array): velocity in the current timestep.            Shape: (number of particles, 3)        a_vec (array): acceleration in the current timestep.            Shape: (number of particles, 3)        mass (array): mass of each particle in the simulation.            Shape: (number of particles,)        type (array): non-unique identifier for each particle.            Shape: (number of particles,)        tracks (array): list of positions through the simulation for central            masses. Shape: (tracked particles, n+1, 3).        CONFIG (array): configuration used to create the simulation.            It will be saved along the state of the simulation.        dt (float): timestep of the simulation        n (int): current timestep. Initialized as n=0.        soft (float): softening length used by the simulation.        verbose (boolean): When True progress statements will be printed.    """    def __init__(self, dt, soft, verbose, CONFIG, method, **kwargs):        """Constructor for the Simulation class.        Arguments:            dt (float): timestep of the simulation            n (int): current timestep. Initialized as n=0.            soft (float): softening length used by the simulation.            verbose (bool): When True progress statements will be printed.            CONFIG (dict): configuration file used to create the simulation.            method (string): Optional. Algorithm to use when computing the                 gravitational forces. One of 'bruteForce', 'bruteForce_numba',                'bruteForce_numbaopt', 'bruteForce_CPP', 'barnesHut_CPP'.        """        self.n = 0        self.t = 0        self.dt = dt        self.soft = soft        self.verbose = verbose        self.CONFIG = CONFIG        # Initialize empty arrays for all necessary properties        self.r_vec = np.empty((0, 3))        self.v_vec = np.empty((0, 3))        self.a_vec = np.empty((0, 3))        self.mass = np.empty((0,))        self.type = np.empty((0, 2))        algorithms = {            'bruteForce': acceleration.bruteForce,            'bruteForceNumba': acceleration.bruteForceNumba,            'bruteForceNumbaOptimized': acceleration.bruteForceNumbaOptimized,            'bruteForceCPP': acceleration.bruteForceCPP,            'barnesHutCPP': acceleration.barnesHutCPP        }        try:            self.acceleration = algorithms[method]        except: raise Exception("Method '{}' unknown".format(method))    def add(self, body):        """Add a body to the simulation. It must expose the public attributes           body.r_vec, body.v_vec, body.a_vec, body.type, body.mass.        Arguments:            body: Object to be added to the simulation (e.g. a Galaxy object)        """        # Extend all relevant attributes by concatenating the body        for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:            simattr, bodyattr = getattr(self, name), getattr(body, name)            setattr(self, name, np.concatenate([simattr, bodyattr], axis=0))        # Order based on mass        order = np.argsort(-self.mass)        for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:             setattr(self, name, getattr(self, name)[order])        # Update the list of objects to keep track of        self.tracks = np.empty((np.sum(self.type[:,0]=='center'), 0, 3))    def step(self):        """Perform a single step of the simulation.           Makes use of a 4th order Verlet integrator.        """        # Calculate the acceleration        self.a_vec = self.acceleration(self.r_vec, self.mass, soft=self.soft)        # Update the state using the Verlet algorithm        # (A custom algorithm is written mainly for learning purposes)        self.r_vec, self.rprev_vec = (2*self.r_vec - self.rprev_vec            + self.a_vec * self.dt**2, self.r_vec)        self.n += 1        # Update tracks        self.tracks = np.concatenate([self.tracks,            self.r_vec[self.type[:,0]=='center'][:,np.newaxis]], axis=1)    def run(self, tmax, saveEvery, outputFolder, **kwargs):        """Run the galactic simulation.        Attributes:            tmax (float): Time to which the simulation will run to.                This is measured here since the start of the simulation,                not since pericenter.            saveEvery (int): The state is saved every saveEvery steps.            outputFolder (string): It will be saved to /data/outputFolder/        """        # When the simulation starts, intialize self.rprev_vec        self.rprev_vec = self.r_vec - self.v_vec * self.dt        if self.verbose: print('Simulation starting. Bon voyage!')        while(self.t < tmax):            self.step()            if(self.n % saveEvery == 0):                self.save('data/{}'.format(outputFolder))        print('Simulation complete.')    def save(self, outputFolder):        """Save the state of the simulation to the outputFolder.           Two files are saved:                sim{self.n}.pickle: serializing the state.                sim{self.n}.png: a simplified 2D plot of x, y.        """        # Create the output folder if it doesn't exist        if not os.path.exists(outputFolder): os.makedirs(outputFolder)        # Compute some useful quantities        # v_vec is not required by the integrator, but useful        self.v_vec = (self.r_vec - self.rprev_vec)/self.dt        self.t = self.n * self.dt # prevents numerical rounding errors        # Serialize state        file = open(outputFolder+'/data{}.pickle'.format(self.n), "wb")        pickle.dump({'r_vec': self.r_vec, 'v_vec': self.v_vec,                     'type': self.type, 'mass': self.mass,                     'CONFIG': self.CONFIG, 't': self.t,                     'tracks': self.tracks}, file)        # Save simplified plot of the current state.        # Its main use is to detect ill-behaved situations early on.        fig = plt.figure()        plt.xlim(-5, 5); plt.ylim(-5, 5); plt.axis('equal')        # Dark halo is plotted in red, disk in blue, bulge in green        PLTCON = [('dark', 'r', 0.3), ('disk', 'b', 1.0), ('bulge', 'g', 0.5)]        for type_, c, a in PLTCON:             plt.scatter(self.r_vec[self.type[:,0]==type_][:,0],                self.r_vec[self.type[:,0]==type_][:,1], s=0.1, c=c, alpha=a)        # Central mass as a magenta star         plt.scatter(self.r_vec[self.type[:,0]=='center'][:,0],            self.r_vec[self.type[:,0]=='center'][:,1], s=100, marker="*", c='m')        # Save to png file        fig.savefig(outputFolder+'/sim{}.png'.format(self.n), dpi=150)        plt.close(fig)    def project(self, theta, phi, view=0):        """Projects the 3D simulation onto a plane as viewed from the           direction described by the (theta, phi, view). Angles in radians.           (This is used by the simulated annealing algorithm)                Parameters:            theta (float): polar angle.            phi (float): azimuthal angle.            view (float): rotation along line of sight.        """        M1 = np.array([[np.cos(phi), np.sin(phi), 0],                       [-np.sin(phi), np.cos(phi), 0],                       [0, 0, 1]])        M2 = np.array([[1, 0, 0],                       [0, np.cos(theta), np.sin(theta)],                       [0, -np.sin(theta), np.cos(theta)]])        M3 = np.array([[np.cos(view), np.sin(view), 0],                       [-np.sin(view), np.cos(view), 0],                       [0, 0, 1]])        M = np.matmul(M1, np.matmul(M2, M3)) # combine rotations        r = np.tensordot(self.r_vec, M, axes=[1, 0])        return r[:,0:2]    def setOrbit(self, galaxy1, galaxy2, e, rmin, R0):        """Sets the two galaxies galaxy1, galaxy2 in an orbit.        Parameters:            galaxy1 (Galaxy): 1st galaxy (main)            galaxy2 (Galaxy): 2nd galaxy (companion)            e: eccentricity of the orbit            rmin: distance of closest approach            R0: initial separation        """        m1, m2 = np.sum(galaxy1.mass), np.sum(galaxy2.mass)        # Relevant formulae:        # $r_0 = r (1 + e) \cos(\phi)$, where $r_0$ ($\neq R_0$) is the semi-latus rectum        # $r_0 = r_\textup{min} (1 + e)$        # $v^2 = G M (2/r - 1/a)$, where a is the semimajor axis        # Solve the reduced two-body problem with reduced mass $\mu$ (mu)        M = m1 + m2        r0 = rmin * (1 + e)        try:            phi = np.arccos((r0/R0 - 1) / e) # inverting the orbit equation            phi = -np.abs(phi) # Choose negative (incoming) angle            ainv = (1 - e) / rmin # ainv = $1/a$, as a may be infinite            v = np.sqrt(M * (2/R0 - ainv))            # Finally, calculate the angle of motion. angle = tan(dy/dx)            # $dy/dx = ((dr/d\phi) sin(\phi) + r \cos(\phi))/((dr/d\phi) cos(\phi) - r \sin(\phi))$            dy = R0/r0 * e * np.sin(phi)**2 + np.cos(phi)            dx = R0/r0 * e * np.sin(phi) * np.cos(phi) - np.sin(phi)            vangle = np.arctan2(dy, dx)        except: raise Exception('''The orbital parameters cannot be satisfied.            For elliptical orbits check that R0 is posible (<rmax).''')        # We now need the actual motion of each body        R_vec = np.array([[R0*np.cos(phi), R0*np.sin(phi), 0.]])        V_vec = np.array([[v*np.cos(vangle), v*np.sin(vangle), 0.]])        galaxy1.r_vec += m2/M * R_vec        galaxy1.v_vec += m2/M * V_vec        galaxy2.r_vec += -m1/M * R_vec        galaxy2.v_vec += -m1/M * V_vec        # Explicitely add the galaxies to the simulation        self.add(galaxy1)        self.add(galaxy2)        if self.verbose: print('Galaxies set in orbit.')</code></pre></details><h3>Methods</h3><dl><dt id="simulation.Simulation.__init__"><code class="name flex"><span>def <span class="ident">__init__</span></span>(<span>self, dt, soft, verbose, CONFIG, method, **kwargs)</span></code></dt><dd><section class="desc"><p>Constructor for the Simulation class.</p><h2 id="arguments">Arguments</h2><dl><dt><strong><code>dt</code></strong> : <code>float</code></dt><dd>timestep of the simulation</dd><dt><strong><code>n</code></strong> : <code>int</code></dt><dd>current timestep. Initialized as n=0.</dd><dt><strong><code>soft</code></strong> : <code>float</code></dt><dd>softening length used by the simulation.</dd><dt><strong><code>verbose</code></strong> : <code>bool</code></dt><dd>When True progress statements will be printed.</dd><dt><strong><code>CONFIG</code></strong> : <code>dict</code></dt><dd>configuration file used to create the simulation.</dd><dt><strong><code>method</code></strong> : <code>string</code></dt><dd>Optional. Algorithm to use when computing thegravitational forces. One of 'bruteForce', 'bruteForce_numba','bruteForce_numbaopt', 'bruteForce_CPP', 'barnesHut_CPP'.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def __init__(self, dt, soft, verbose, CONFIG, method, **kwargs):    """Constructor for the Simulation class.    Arguments:        dt (float): timestep of the simulation        n (int): current timestep. Initialized as n=0.        soft (float): softening length used by the simulation.        verbose (bool): When True progress statements will be printed.        CONFIG (dict): configuration file used to create the simulation.        method (string): Optional. Algorithm to use when computing the             gravitational forces. One of 'bruteForce', 'bruteForce_numba',            'bruteForce_numbaopt', 'bruteForce_CPP', 'barnesHut_CPP'.    """    self.n = 0    self.t = 0    self.dt = dt    self.soft = soft    self.verbose = verbose    self.CONFIG = CONFIG    # Initialize empty arrays for all necessary properties    self.r_vec = np.empty((0, 3))    self.v_vec = np.empty((0, 3))    self.a_vec = np.empty((0, 3))    self.mass = np.empty((0,))    self.type = np.empty((0, 2))    algorithms = {        'bruteForce': acceleration.bruteForce,        'bruteForceNumba': acceleration.bruteForceNumba,        'bruteForceNumbaOptimized': acceleration.bruteForceNumbaOptimized,        'bruteForceCPP': acceleration.bruteForceCPP,        'barnesHutCPP': acceleration.barnesHutCPP    }    try:        self.acceleration = algorithms[method]    except: raise Exception("Method '{}' unknown".format(method))</code></pre></details></dd><dt id="simulation.Simulation.add"><code class="name flex"><span>def <span class="ident">add</span></span>(<span>self, body)</span></code></dt><dd><section class="desc"><p>Add a body to the simulation. It must expose the public attributesbody.r_vec, body.v_vec, body.a_vec, body.type, body.mass.</p><h2 id="arguments">Arguments</h2><dl><dt><strong><code>body</code></strong></dt><dd>Object to be added to the simulation (e.g. a Galaxy object)</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def add(self, body):    """Add a body to the simulation. It must expose the public attributes       body.r_vec, body.v_vec, body.a_vec, body.type, body.mass.    Arguments:        body: Object to be added to the simulation (e.g. a Galaxy object)    """    # Extend all relevant attributes by concatenating the body    for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:        simattr, bodyattr = getattr(self, name), getattr(body, name)        setattr(self, name, np.concatenate([simattr, bodyattr], axis=0))    # Order based on mass    order = np.argsort(-self.mass)    for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:         setattr(self, name, getattr(self, name)[order])    # Update the list of objects to keep track of    self.tracks = np.empty((np.sum(self.type[:,0]=='center'), 0, 3))</code></pre></details></dd><dt id="simulation.Simulation.project"><code class="name flex"><span>def <span class="ident">project</span></span>(<span>self, theta, phi, view=0)</span></code></dt><dd><section class="desc"><p>Projects the 3D simulation onto a plane as viewed from thedirection described by the (theta, phi, view). Angles in radians.(This is used by the simulated annealing algorithm)</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>theta</code></strong> : <code>float</code></dt><dd>polar angle.</dd><dt><strong><code>phi</code></strong> : <code>float</code></dt><dd>azimuthal angle.</dd><dt><strong><code>view</code></strong> : <code>float</code></dt><dd>rotation along line of sight.</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def project(self, theta, phi, view=0):    """Projects the 3D simulation onto a plane as viewed from the       direction described by the (theta, phi, view). Angles in radians.       (This is used by the simulated annealing algorithm)        Parameters:        theta (float): polar angle.        phi (float): azimuthal angle.        view (float): rotation along line of sight.    """    M1 = np.array([[np.cos(phi), np.sin(phi), 0],                   [-np.sin(phi), np.cos(phi), 0],                   [0, 0, 1]])    M2 = np.array([[1, 0, 0],                   [0, np.cos(theta), np.sin(theta)],                   [0, -np.sin(theta), np.cos(theta)]])    M3 = np.array([[np.cos(view), np.sin(view), 0],                   [-np.sin(view), np.cos(view), 0],                   [0, 0, 1]])    M = np.matmul(M1, np.matmul(M2, M3)) # combine rotations    r = np.tensordot(self.r_vec, M, axes=[1, 0])    return r[:,0:2]</code></pre></details></dd><dt id="simulation.Simulation.run"><code class="name flex"><span>def <span class="ident">run</span></span>(<span>self, tmax, saveEvery, outputFolder, **kwargs)</span></code></dt><dd><section class="desc"><p>Run the galactic simulation.</p><h2 id="attributes">Attributes</h2><dl><dt><strong><code>tmax</code></strong> : <code>float</code></dt><dd>Time to which the simulation will run to.This is measured here since the start of the simulation,not since pericenter.</dd><dt><strong><code>saveEvery</code></strong> : <code>int</code></dt><dd>The state is saved every saveEvery steps.</dd><dt><strong><code>outputFolder</code></strong> : <code>string</code></dt><dd>It will be saved to /data/outputFolder/</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def run(self, tmax, saveEvery, outputFolder, **kwargs):    """Run the galactic simulation.    Attributes:        tmax (float): Time to which the simulation will run to.            This is measured here since the start of the simulation,            not since pericenter.        saveEvery (int): The state is saved every saveEvery steps.        outputFolder (string): It will be saved to /data/outputFolder/    """    # When the simulation starts, intialize self.rprev_vec    self.rprev_vec = self.r_vec - self.v_vec * self.dt    if self.verbose: print('Simulation starting. Bon voyage!')    while(self.t < tmax):        self.step()        if(self.n % saveEvery == 0):            self.save('data/{}'.format(outputFolder))    print('Simulation complete.')</code></pre></details></dd><dt id="simulation.Simulation.save"><code class="name flex"><span>def <span class="ident">save</span></span>(<span>self, outputFolder)</span></code></dt><dd><section class="desc"><p>Save the state of the simulation to the outputFolder.Two files are saved:sim{self.n}.pickle: serializing the state.sim{self.n}.png: a simplified 2D plot of x, y.</p></section><details class="source"><summary>Source code</summary><pre><code class="python">def save(self, outputFolder):    """Save the state of the simulation to the outputFolder.       Two files are saved:            sim{self.n}.pickle: serializing the state.            sim{self.n}.png: a simplified 2D plot of x, y.    """    # Create the output folder if it doesn't exist    if not os.path.exists(outputFolder): os.makedirs(outputFolder)    # Compute some useful quantities    # v_vec is not required by the integrator, but useful    self.v_vec = (self.r_vec - self.rprev_vec)/self.dt    self.t = self.n * self.dt # prevents numerical rounding errors    # Serialize state    file = open(outputFolder+'/data{}.pickle'.format(self.n), "wb")    pickle.dump({'r_vec': self.r_vec, 'v_vec': self.v_vec,                 'type': self.type, 'mass': self.mass,                 'CONFIG': self.CONFIG, 't': self.t,                 'tracks': self.tracks}, file)    # Save simplified plot of the current state.    # Its main use is to detect ill-behaved situations early on.    fig = plt.figure()    plt.xlim(-5, 5); plt.ylim(-5, 5); plt.axis('equal')    # Dark halo is plotted in red, disk in blue, bulge in green    PLTCON = [('dark', 'r', 0.3), ('disk', 'b', 1.0), ('bulge', 'g', 0.5)]    for type_, c, a in PLTCON:         plt.scatter(self.r_vec[self.type[:,0]==type_][:,0],            self.r_vec[self.type[:,0]==type_][:,1], s=0.1, c=c, alpha=a)    # Central mass as a magenta star     plt.scatter(self.r_vec[self.type[:,0]=='center'][:,0],        self.r_vec[self.type[:,0]=='center'][:,1], s=100, marker="*", c='m')    # Save to png file    fig.savefig(outputFolder+'/sim{}.png'.format(self.n), dpi=150)    plt.close(fig)</code></pre></details></dd><dt id="simulation.Simulation.setOrbit"><code class="name flex"><span>def <span class="ident">setOrbit</span></span>(<span>self, galaxy1, galaxy2, e, rmin, R0)</span></code></dt><dd><section class="desc"><p>Sets the two galaxies galaxy1, galaxy2 in an orbit.</p><h2 id="parameters">Parameters</h2><dl><dt><strong><code>galaxy1</code></strong> : <a title="simulation.Galaxy" href="#simulation.Galaxy"><code>Galaxy</code></a></dt><dd>1st galaxy (main)</dd><dt><strong><code>galaxy2</code></strong> : <a title="simulation.Galaxy" href="#simulation.Galaxy"><code>Galaxy</code></a></dt><dd>2nd galaxy (companion)</dd><dt><strong><code>e</code></strong></dt><dd>eccentricity of the orbit</dd><dt><strong><code>rmin</code></strong></dt><dd>distance of closest approach</dd><dt><strong><code>R0</code></strong></dt><dd>initial separation</dd></dl></section><details class="source"><summary>Source code</summary><pre><code class="python">def setOrbit(self, galaxy1, galaxy2, e, rmin, R0):    """Sets the two galaxies galaxy1, galaxy2 in an orbit.    Parameters:        galaxy1 (Galaxy): 1st galaxy (main)        galaxy2 (Galaxy): 2nd galaxy (companion)        e: eccentricity of the orbit        rmin: distance of closest approach        R0: initial separation    """    m1, m2 = np.sum(galaxy1.mass), np.sum(galaxy2.mass)    # Relevant formulae:    # $r_0 = r (1 + e) \cos(\phi)$, where $r_0$ ($\neq R_0$) is the semi-latus rectum    # $r_0 = r_\textup{min} (1 + e)$    # $v^2 = G M (2/r - 1/a)$, where a is the semimajor axis    # Solve the reduced two-body problem with reduced mass $\mu$ (mu)    M = m1 + m2    r0 = rmin * (1 + e)    try:        phi = np.arccos((r0/R0 - 1) / e) # inverting the orbit equation        phi = -np.abs(phi) # Choose negative (incoming) angle        ainv = (1 - e) / rmin # ainv = $1/a$, as a may be infinite        v = np.sqrt(M * (2/R0 - ainv))        # Finally, calculate the angle of motion. angle = tan(dy/dx)        # $dy/dx = ((dr/d\phi) sin(\phi) + r \cos(\phi))/((dr/d\phi) cos(\phi) - r \sin(\phi))$        dy = R0/r0 * e * np.sin(phi)**2 + np.cos(phi)        dx = R0/r0 * e * np.sin(phi) * np.cos(phi) - np.sin(phi)        vangle = np.arctan2(dy, dx)    except: raise Exception('''The orbital parameters cannot be satisfied.        For elliptical orbits check that R0 is posible (<rmax).''')    # We now need the actual motion of each body    R_vec = np.array([[R0*np.cos(phi), R0*np.sin(phi), 0.]])    V_vec = np.array([[v*np.cos(vangle), v*np.sin(vangle), 0.]])    galaxy1.r_vec += m2/M * R_vec    galaxy1.v_vec += m2/M * V_vec    galaxy2.r_vec += -m1/M * R_vec    galaxy2.v_vec += -m1/M * V_vec    # Explicitely add the galaxies to the simulation    self.add(galaxy1)    self.add(galaxy2)    if self.verbose: print('Galaxies set in orbit.')</code></pre></details></dd><dt id="simulation.Simulation.step"><code class="name flex"><span>def <span class="ident">step</span></span>(<span>self)</span></code></dt><dd><section class="desc"><p>Perform a single step of the simulation.Makes use of a 4th order Verlet integrator.</p></section><details class="source"><summary>Source code</summary><pre><code class="python">def step(self):    """Perform a single step of the simulation.       Makes use of a 4th order Verlet integrator.    """    # Calculate the acceleration    self.a_vec = self.acceleration(self.r_vec, self.mass, soft=self.soft)    # Update the state using the Verlet algorithm    # (A custom algorithm is written mainly for learning purposes)    self.r_vec, self.rprev_vec = (2*self.r_vec - self.rprev_vec        + self.a_vec * self.dt**2, self.r_vec)    self.n += 1    # Update tracks    self.tracks = np.concatenate([self.tracks,        self.r_vec[self.type[:,0]=='center'][:,np.newaxis]], axis=1)</code></pre></details></dd></dl></dd></dl></section></article><nav id="sidebar"><h1>Index</h1><div class="toc"><ul></ul></div><ul id="index"><li><h3><a href="#header-classes">Classes</a></h3><ul><li><h4><code><a title="simulation.Galaxy" href="#simulation.Galaxy">Galaxy</a></code></h4><ul class=""><li><code><a title="simulation.Galaxy.__init__" href="#simulation.Galaxy.__init__">__init__</a></code></li><li><code><a title="simulation.Galaxy.addBulge" href="#simulation.Galaxy.addBulge">addBulge</a></code></li><li><code><a title="simulation.Galaxy.addDisk" href="#simulation.Galaxy.addDisk">addDisk</a></code></li><li><code><a title="simulation.Galaxy.addHalo" href="#simulation.Galaxy.addHalo">addHalo</a></code></li><li><code><a title="simulation.Galaxy.rotate" href="#simulation.Galaxy.rotate">rotate</a></code></li></ul></li><li><h4><code><a title="simulation.Simulation" href="#simulation.Simulation">Simulation</a></code></h4><ul class="two-column"><li><code><a title="simulation.Simulation.__init__" href="#simulation.Simulation.__init__">__init__</a></code></li><li><code><a title="simulation.Simulation.add" href="#simulation.Simulation.add">add</a></code></li><li><code><a title="simulation.Simulation.project" href="#simulation.Simulation.project">project</a></code></li><li><code><a title="simulation.Simulation.run" href="#simulation.Simulation.run">run</a></code></li><li><code><a title="simulation.Simulation.save" href="#simulation.Simulation.save">save</a></code></li><li><code><a title="simulation.Simulation.setOrbit" href="#simulation.Simulation.setOrbit">setOrbit</a></code></li><li><code><a title="simulation.Simulation.step" href="#simulation.Simulation.step">step</a></code></li></ul></li></ul></li></ul></nav></main><footer id="footer"><p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p></footer><script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script><script>hljs.initHighlightingOnLoad()</script></body></html>
 |