| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 | 
							- <!doctype html>
 
- <html lang="en">
 
- <head>
 
- <meta charset="utf-8">
 
- <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
 
- <meta name="generator" content="pdoc 0.5.2" />
 
- <title>analysis.segmentation API documentation</title>
 
- <meta name="description" content="Segmentation algorithm used to identify the different structures
 
- that are formed in the encounter. This file can be called from the
 
- command line to …" />
 
- <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
 
- <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
 
- <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
 
- <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
 
- <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
 
- <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
 
- </head>
 
- <body>
 
- <main>
 
- <article id="content">
 
- <header>
 
- <h1 class="title"><code>analysis.segmentation</code> module</h1>
 
- </header>
 
- <section id="section-intro">
 
- <p>Segmentation algorithm used to identify the different structures
 
- that are formed in the encounter. This file can be called from the
 
- command line to make an illustrative plot of the algorithm.</p>
 
- <details class="source">
 
- <summary>Source code</summary>
 
- <pre><code class="python">"""Segmentation algorithm used to identify the different structures
 
- that are formed in the encounter. This file can be called from the
 
- command line to make an illustrative plot of the algorithm.
 
- """
 
- import numpy as np
 
- import matplotlib.pyplot as plt
 
- import matplotlib.patches as patches
 
- import utils
 
- def segmentEncounter(data, plot=False, mode='all'):
 
-     """Segment the encounter into tail, bridge, orbitting and
 
-     stolen particles as described in the report.
 
-     Parameters:
 
-         data: A data instance as saved by the simulation to a pickle file
 
-         plot: If true the segmentation will be plotted and shown. Highly
 
-             useful for debugging.
 
-         mode (string): If mode is 'all' all parts of the encounter will be
 
-             identified. If mode is 'bridge' only the bridge will be
 
-             identified. This is useful when there may be no tail.
 
-     Returns:
 
-         masks (tupple): tupple of array corresponding to the masks of the 
 
-             (bridge, stolen, orbitting, tail) particles. One can then use
 
-             e.g. data['r_vec'][bridgeMask].
 
-         shape (tupple): tupple of (distances, angles) as measured from the
 
-             center of mass and with respect to the x axis. They define the
 
-             shape of the tail
 
-         length (float): total length of the tail.
 
-     """
 
-     nRings = 100 # number of rings to use when segmenting the data
 
-     # Localize the central masses
 
-     r_vec = data['r_vec']
 
-     centers = r_vec[data['type'][:,0]=='center']
 
-     rCenters_vec = centers[1] - centers[0]
 
-     rCenters = np.linalg.norm(rCenters_vec)
 
-     rCenters_unit = rCenters_vec/np.linalg.norm(rCenters_vec)
 
-     # Take particles to be on the tail a priori and
 
-     # remove them as they are found in other structures
 
-     particlesLeft = np.arange(0, len(r_vec))
 
-     if plot:
 
-         colour = '#c40f4c'
 
-         f, axs = plt.subplots(1, 3,  figsize=(9, 4), sharey=False)
 
-         f.subplots_adjust(hspace=0, wspace=0)
 
-         axs[0].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
 
-         axs[0].axis('equal')
 
-         utils.plotCenterMasses(axs[0], data)
 
-         axs[0].axis('off')
 
-     # Step 1: project points to see if they are part of the bridge
 
-     parallelProjection = np.dot(r_vec - centers[0], rCenters_unit)
 
-     perpendicularProjection = np.linalg.norm(r_vec - centers[0][np.newaxis] 
 
-         - parallelProjection[:,np.newaxis] * rCenters_unit[np.newaxis], axis=-1)
 
-     bridgeMask = np.logical_and(np.logical_and(0.3*rCenters < parallelProjection,
 
-         parallelProjection < .7*rCenters), perpendicularProjection < 2)
 
-     # Remove the bridge
 
-     notInBridge = np.logical_not(bridgeMask)
 
-     r_vec = r_vec[notInBridge]
 
-     particlesLeft = particlesLeft[notInBridge]
 
-     if mode == 'bridge':
 
-         return (bridgeMask, None, None, None), None, None
 
-     # Step 2: select stolen particles by checking distance to centers
 
-     stolenMask = (np.linalg.norm(r_vec - centers[0][np.newaxis], axis=-1) 
 
-         > np.linalg.norm(r_vec - centers[1][np.newaxis], axis=-1))
 
-     # Remove the stolen part
 
-     notStolen = np.logical_not(stolenMask)
 
-     r_vec = r_vec[notStolen]
 
-     particlesLeft, stolenMask = particlesLeft[notStolen], particlesLeft[stolenMask]
 
-     # Step 3: segment data into concentric rings (spherical shells really)
 
-     r_vec = r_vec - centers[0]
 
-     r = np.linalg.norm(r_vec, axis=-1)
 
-     edges = np.linspace(0, 30, nRings) # nRings concentric spheres 
 
-     indices = np.digitize(r, edges) # Classify particles into shells
 
-     if plot:
 
-         axs[1].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=.1, s=.1)
 
-         axs[1].axis('equal')
 
-         axs[1].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
 
-         axs[1].axis('off')
 
-     
 
-     # Step 4: find start of tail
 
-     start = None
 
-     for i in range(1, nRings+1):
 
-         rMean = np.mean(r[indices==i])
 
-         rMean_vec = np.mean(r_vec[indices==i], axis=0)
 
-         parameter = np.linalg.norm(rMean_vec)/rMean
 
-         if plot:
 
-             circ = patches.Circle((0,0), edges[i-1], linewidth=0.5,edgecolor='black',facecolor='none', alpha=.7)
 
-             axs[1].add_patch(circ)
 
-             txtxy = edges[i-1] * np.array([np.sin(i/13), np.cos(i/13)])
 
-             axs[1].annotate("{:.2f}".format(parameter), xy=txtxy, backgroundcolor='#ffffff55')
 
-         
 
-         if start is None and parameter>.8 : 
 
-             start = i #Here starts the tail
 
-             startDirection = rMean_vec/np.linalg.norm(rMean_vec)
 
-             if not plot: break;
 
-     if start is None: #abort if nothing found
 
-         raise Exception('Could not identify tail')
 
-     # Step 5: remove all circles before start
 
-     inInnerRings = indices < start
 
-     # Remove particles on the opposite direction to startDirection. 
 
-     # in the now innermost 5 rings. Likely traces of the bridge.
 
-     oppositeDirection = np.dot(r_vec, startDirection) < 0
 
-     in5InnermostRings = indices <= start+5
 
-     orbitting = np.logical_or(inInnerRings, 
 
-         np.logical_and(oppositeDirection, in5InnermostRings))
 
-     orbittingMask = particlesLeft[orbitting]
 
-     r_vec = r_vec[np.logical_not(orbitting)]
 
-     tailMask = particlesLeft[np.logical_not(orbitting)]
 
-     if plot:
 
-         axs[2].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
 
-         axs[2].axis('equal')
 
-         axs[2].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
 
-         axs[2].axis('off')
 
-     # Step 6: measure tail length and shape
 
-     r = np.linalg.norm(r_vec, axis=-1)
 
-     indices = np.digitize(r, edges)
 
-     # Make list of barycenters
 
-     points = [list(np.mean(r_vec[indices==i], axis=0))
 
-         for i in range(1, nRings) if len(r_vec[indices==i])!=0]
 
-     points = np.array(points)
 
-     # Calculate total length
 
-     lengths = np.sqrt(np.sum(np.diff(points, axis=0)**2, axis=1))
 
-     length = np.sum(lengths)
 
-     # Shape (for 2D only)
 
-     angles = np.arctan2(points[:,1], points[:,0])
 
-     distances = np.linalg.norm(points, axis=-1)
 
-     shape = (distances, angles)
 
-     if plot:
 
-         axs[2].plot(points[:,0], points[:,1], c='black', linewidth=0.5, marker='+')
 
-     if plot:
 
-         plt.show()
 
-     return (bridgeMask, stolenMask, orbittingMask, tailMask), shape, length
 
- if __name__ == "__main__":
 
-     data = utils.loadData('200mass', 10400)
 
-     segmentEncounter(data, plot=True)</code></pre>
 
- </details>
 
- </section>
 
- <section>
 
- </section>
 
- <section>
 
- </section>
 
- <section>
 
- <h2 class="section-title" id="header-functions">Functions</h2>
 
- <dl>
 
- <dt id="analysis.segmentation.segmentEncounter"><code class="name flex">
 
- <span>def <span class="ident">segmentEncounter</span></span>(<span>data, plot=False, mode='all')</span>
 
- </code></dt>
 
- <dd>
 
- <section class="desc"><p>Segment the encounter into tail, bridge, orbitting and
 
- stolen particles as described in the report.</p>
 
- <h2 id="parameters">Parameters</h2>
 
- <dl>
 
- <dt><strong><code>data</code></strong></dt>
 
- <dd>A data instance as saved by the simulation to a pickle file</dd>
 
- <dt><strong><code>plot</code></strong></dt>
 
- <dd>If true the segmentation will be plotted and shown. Highly
 
- useful for debugging.</dd>
 
- <dt><strong><code>mode</code></strong> : <code>string</code></dt>
 
- <dd>If mode is 'all' all parts of the encounter will be
 
- identified. If mode is 'bridge' only the bridge will be
 
- identified. This is useful when there may be no tail.</dd>
 
- </dl>
 
- <h2 id="returns">Returns</h2>
 
- <dl>
 
- <dt><strong><code>masks</code></strong> : <code>tupple</code></dt>
 
- <dd>tupple of array corresponding to the masks of the
 
- (bridge, stolen, orbitting, tail) particles. One can then use
 
- e.g. data['r_vec'][bridgeMask].</dd>
 
- <dt><strong><code>shape</code></strong> : <code>tupple</code></dt>
 
- <dd>tupple of (distances, angles) as measured from the
 
- center of mass and with respect to the x axis. They define the
 
- shape of the tail</dd>
 
- <dt><strong><code>length</code></strong> : <code>float</code></dt>
 
- <dd>total length of the tail.</dd>
 
- </dl></section>
 
- <details class="source">
 
- <summary>Source code</summary>
 
- <pre><code class="python">def segmentEncounter(data, plot=False, mode='all'):
 
-     """Segment the encounter into tail, bridge, orbitting and
 
-     stolen particles as described in the report.
 
-     Parameters:
 
-         data: A data instance as saved by the simulation to a pickle file
 
-         plot: If true the segmentation will be plotted and shown. Highly
 
-             useful for debugging.
 
-         mode (string): If mode is 'all' all parts of the encounter will be
 
-             identified. If mode is 'bridge' only the bridge will be
 
-             identified. This is useful when there may be no tail.
 
-     Returns:
 
-         masks (tupple): tupple of array corresponding to the masks of the 
 
-             (bridge, stolen, orbitting, tail) particles. One can then use
 
-             e.g. data['r_vec'][bridgeMask].
 
-         shape (tupple): tupple of (distances, angles) as measured from the
 
-             center of mass and with respect to the x axis. They define the
 
-             shape of the tail
 
-         length (float): total length of the tail.
 
-     """
 
-     nRings = 100 # number of rings to use when segmenting the data
 
-     # Localize the central masses
 
-     r_vec = data['r_vec']
 
-     centers = r_vec[data['type'][:,0]=='center']
 
-     rCenters_vec = centers[1] - centers[0]
 
-     rCenters = np.linalg.norm(rCenters_vec)
 
-     rCenters_unit = rCenters_vec/np.linalg.norm(rCenters_vec)
 
-     # Take particles to be on the tail a priori and
 
-     # remove them as they are found in other structures
 
-     particlesLeft = np.arange(0, len(r_vec))
 
-     if plot:
 
-         colour = '#c40f4c'
 
-         f, axs = plt.subplots(1, 3,  figsize=(9, 4), sharey=False)
 
-         f.subplots_adjust(hspace=0, wspace=0)
 
-         axs[0].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
 
-         axs[0].axis('equal')
 
-         utils.plotCenterMasses(axs[0], data)
 
-         axs[0].axis('off')
 
-     # Step 1: project points to see if they are part of the bridge
 
-     parallelProjection = np.dot(r_vec - centers[0], rCenters_unit)
 
-     perpendicularProjection = np.linalg.norm(r_vec - centers[0][np.newaxis] 
 
-         - parallelProjection[:,np.newaxis] * rCenters_unit[np.newaxis], axis=-1)
 
-     bridgeMask = np.logical_and(np.logical_and(0.3*rCenters < parallelProjection,
 
-         parallelProjection < .7*rCenters), perpendicularProjection < 2)
 
-     # Remove the bridge
 
-     notInBridge = np.logical_not(bridgeMask)
 
-     r_vec = r_vec[notInBridge]
 
-     particlesLeft = particlesLeft[notInBridge]
 
-     if mode == 'bridge':
 
-         return (bridgeMask, None, None, None), None, None
 
-     # Step 2: select stolen particles by checking distance to centers
 
-     stolenMask = (np.linalg.norm(r_vec - centers[0][np.newaxis], axis=-1) 
 
-         > np.linalg.norm(r_vec - centers[1][np.newaxis], axis=-1))
 
-     # Remove the stolen part
 
-     notStolen = np.logical_not(stolenMask)
 
-     r_vec = r_vec[notStolen]
 
-     particlesLeft, stolenMask = particlesLeft[notStolen], particlesLeft[stolenMask]
 
-     # Step 3: segment data into concentric rings (spherical shells really)
 
-     r_vec = r_vec - centers[0]
 
-     r = np.linalg.norm(r_vec, axis=-1)
 
-     edges = np.linspace(0, 30, nRings) # nRings concentric spheres 
 
-     indices = np.digitize(r, edges) # Classify particles into shells
 
-     if plot:
 
-         axs[1].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=.1, s=.1)
 
-         axs[1].axis('equal')
 
-         axs[1].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
 
-         axs[1].axis('off')
 
-     
 
-     # Step 4: find start of tail
 
-     start = None
 
-     for i in range(1, nRings+1):
 
-         rMean = np.mean(r[indices==i])
 
-         rMean_vec = np.mean(r_vec[indices==i], axis=0)
 
-         parameter = np.linalg.norm(rMean_vec)/rMean
 
-         if plot:
 
-             circ = patches.Circle((0,0), edges[i-1], linewidth=0.5,edgecolor='black',facecolor='none', alpha=.7)
 
-             axs[1].add_patch(circ)
 
-             txtxy = edges[i-1] * np.array([np.sin(i/13), np.cos(i/13)])
 
-             axs[1].annotate("{:.2f}".format(parameter), xy=txtxy, backgroundcolor='#ffffff55')
 
-         
 
-         if start is None and parameter>.8 : 
 
-             start = i #Here starts the tail
 
-             startDirection = rMean_vec/np.linalg.norm(rMean_vec)
 
-             if not plot: break;
 
-     if start is None: #abort if nothing found
 
-         raise Exception('Could not identify tail')
 
-     # Step 5: remove all circles before start
 
-     inInnerRings = indices < start
 
-     # Remove particles on the opposite direction to startDirection. 
 
-     # in the now innermost 5 rings. Likely traces of the bridge.
 
-     oppositeDirection = np.dot(r_vec, startDirection) < 0
 
-     in5InnermostRings = indices <= start+5
 
-     orbitting = np.logical_or(inInnerRings, 
 
-         np.logical_and(oppositeDirection, in5InnermostRings))
 
-     orbittingMask = particlesLeft[orbitting]
 
-     r_vec = r_vec[np.logical_not(orbitting)]
 
-     tailMask = particlesLeft[np.logical_not(orbitting)]
 
-     if plot:
 
-         axs[2].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
 
-         axs[2].axis('equal')
 
-         axs[2].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
 
-         axs[2].axis('off')
 
-     # Step 6: measure tail length and shape
 
-     r = np.linalg.norm(r_vec, axis=-1)
 
-     indices = np.digitize(r, edges)
 
-     # Make list of barycenters
 
-     points = [list(np.mean(r_vec[indices==i], axis=0))
 
-         for i in range(1, nRings) if len(r_vec[indices==i])!=0]
 
-     points = np.array(points)
 
-     # Calculate total length
 
-     lengths = np.sqrt(np.sum(np.diff(points, axis=0)**2, axis=1))
 
-     length = np.sum(lengths)
 
-     # Shape (for 2D only)
 
-     angles = np.arctan2(points[:,1], points[:,0])
 
-     distances = np.linalg.norm(points, axis=-1)
 
-     shape = (distances, angles)
 
-     if plot:
 
-         axs[2].plot(points[:,0], points[:,1], c='black', linewidth=0.5, marker='+')
 
-     if plot:
 
-         plt.show()
 
-     return (bridgeMask, stolenMask, orbittingMask, tailMask), shape, length</code></pre>
 
- </details>
 
- </dd>
 
- </dl>
 
- </section>
 
- <section>
 
- </section>
 
- </article>
 
- <nav id="sidebar">
 
- <h1>Index</h1>
 
- <div class="toc">
 
- <ul></ul>
 
- </div>
 
- <ul id="index">
 
- <li><h3><a href="#header-functions">Functions</a></h3>
 
- <ul class="">
 
- <li><code><a title="analysis.segmentation.segmentEncounter" href="#analysis.segmentation.segmentEncounter">segmentEncounter</a></code></li>
 
- </ul>
 
- </li>
 
- </ul>
 
- </nav>
 
- </main>
 
- <footer id="footer">
 
- <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
 
- </footer>
 
- <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
 
- <script>hljs.initHighlightingOnLoad()</script>
 
- </body>
 
- </html>
 
 
  |