123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- """Plots the evolution of the simulated annealing algorithm from a log file"""
- import matplotlib.pyplot as plt
- import numpy as np
- import pickle
- import pandas
- from scipy.signal import savgol_filter
- from analysis import utils
- def deroll(arr, limits, start=0):
- """Derolls a log array. It returns a likely guess of what an array would
- have been before applying a mod operator to bring it into the limits
- region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
- return [0.5, 0.7, 0.9, 1.1].
- Parameters:
- arr (array): array to deroll
- limit (tuple): (lower limit, upper limit)
- start (int): the first start values of the array will not be derolled
- Returns:
- The derolled array.
- """
- for i in range(start,len(arr)-1): # Do not deroll before start
- if np.abs(arr[i+1]-arr[i]) > (limits[1]-limits[0])/2:
- # Continue the array in the closest possible way
- if arr[i+1]>arr[i]: arr[i+1:] -= (limits[1]-limits[0])
- else: arr[i+1:] += (limits[1]-limits[0])
- return arr
- def returnBars(arr, n):
- """Calculates the 10th-90th percentile running confidence interval
- Parameters:
- arr (arr): The array to calculate error bars for
- n (int): The smoothing of the confidence interval
- Returns:
- The smoothed running confidence interval
- """
- r = pandas.Series(arr).rolling(window = n, center = False)
- s1, s2 = r.quantile(.90), r.quantile(.1)
- return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3)
- # Load the data saved by the simulating annealing algorithm
- log = pickle.load(open('data/logs/log.pickle', "rb" ) )[:1400]
- # Define the parameters we wish to plot
- mask = [0,1,2,3,5,7,8] #Non-fixed parameters
- limits = np.array([[0, np.pi], [-np.pi, np.pi],
- [0, np.pi], [-np.pi, np.pi],
- [.5,1.0], [.55,.8], [.55,.8]])
- labels = [r'$i_1$ / rad', r'$\omega_1$ / rad',
- r'$i_2$ / rad', r'$\omega_2$ / rad',
- 'e', r'$R_1$', r'$R_2$', r'$\mu$']
- ticks = [[0, np.pi], [-np.pi,0, np.pi],
- [0, np.pi],[-np.pi, 0, np.pi],
- [.5, 1.0], [.55, .8], [.55, .8]]
- ticklabels = [[0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'],
- [0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'],
- ['.5','1.0'], ['.55','.8'], ['.55','.8']]
- # Mask away the parameters we don't want to plot
- scores = np.array([l[0] for l in log])
- paramss = np.array([l[1] for l in log])[:,mask]
- # Fix conventions for inclination
- paramss[:,0] = paramss[:,0] - np.pi
- paramss[:,2] = np.pi - paramss[:,2]
- # Start plotting
- i = np.arange(len(log))
- f, axs = plt.subplots(1+len(paramss[0]), 1, figsize=(10, 10),
- sharex=True, gridspec_kw = {'height_ratios':[2., 1., 1, 1, 1, 1, 1, 1]})
- plt.tight_layout()
- utils.stylizePlot(axs)
- # Plot metric
- axs[0].scatter(i, scores, marker='x', c='black', s=5, linewidth=.5)
- axs[0].fill_between(i[20:], *returnBars(scores, 20), color='r', alpha=.2)
- utils.setSize(axs[0], x=(0, None), y=(0.8, None))
- utils.setAxes(axs[0], y='Metric')
- # Get twin axis to mark temperature in it
- ax2 = axs[0].twiny()
- ax2.set_xscale('log')
- ax2.set_xlabel('Temperature', fontsize=14)
- ax2.invert_xaxis()
- ax2.set_xlim((.25, 0.015129))
- ax2.set_xticks([.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01])
- ax2.set_xticklabels([str(i)
- for i in [.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01]])
- # Plot parameters one by one
- for j in range(0, len(paramss[0])):
- utils.setSize(axs[j+1], x=(0, len(log)), y=limits[j])
- axs[j+1].set_ylabel(labels[j], fontsize=14)
- axs[j+1].set_yticks(ticks[j])
- axs[j+1].set_yticklabels(ticklabels[j])
- # Be careful plotting cyclic parameters
- derolled = deroll(paramss[:,j], limits[j], start=500)
- bar1, bar2 = returnBars(paramss[:,j], 20)
- for k in range(-3, 3): #
- # Plot the confidence intervals an data multiple times
- # to deal with cyclic parameters
- axs[j+1].scatter(i, derolled + k*(limits[j][1]-limits[j][0]),
- marker='x', c='black', s=5, linewidth=.5)
- axs[j+1].fill_between(i[20:], bar1 + k*(limits[j][1]-limits[j][0]),
- bar2 + k*(limits[j][1]-limits[j][0]), color='r', alpha=.2)
- f.align_ylabels(axs[:])
- axs[-1].set_xlabel('Iteration', fontsize=14)
- plt.show()
|