simulatedAnnealing.html 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. <!doctype html>
  2. <html lang="en">
  3. <head>
  4. <meta charset="utf-8">
  5. <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
  6. <meta name="generator" content="pdoc 0.5.2" />
  7. <title>analysis.simulatedAnnealing API documentation</title>
  8. <meta name="description" content="Plots the evolution of the simulated annealing algorithm from a log file" />
  9. <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
  10. <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
  11. <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
  12. <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
  13. <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
  14. <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
  15. </head>
  16. <body>
  17. <main>
  18. <article id="content">
  19. <header>
  20. <h1 class="title"><code>analysis.simulatedAnnealing</code> module</h1>
  21. </header>
  22. <section id="section-intro">
  23. <p>Plots the evolution of the simulated annealing algorithm from a log file</p>
  24. <details class="source">
  25. <summary>Source code</summary>
  26. <pre><code class="python">&#34;&#34;&#34;Plots the evolution of the simulated annealing algorithm from a log file&#34;&#34;&#34;
  27. import matplotlib.pyplot as plt
  28. import numpy as np
  29. import pickle
  30. import pandas
  31. from scipy.signal import savgol_filter
  32. from analysis import utils
  33. def deroll(arr, limits, start=0):
  34. &#34;&#34;&#34;Derolls a log array. It returns a likely guess of what an array would
  35. have been before applying a mod operator to bring it into the limits
  36. region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
  37. return [0.5, 0.7, 0.9, 1.1].
  38. Parameters:
  39. arr (array): array to deroll
  40. limit (tuple): (lower limit, upper limit)
  41. start (int): the first start values of the array will not be derolled
  42. Returns:
  43. The derolled array.
  44. &#34;&#34;&#34;
  45. for i in range(start,len(arr)-1): # Do not deroll before start
  46. if np.abs(arr[i+1]-arr[i]) &gt; (limits[1]-limits[0])/2:
  47. # Continue the array in the closest possible way
  48. if arr[i+1]&gt;arr[i]: arr[i+1:] -= (limits[1]-limits[0])
  49. else: arr[i+1:] += (limits[1]-limits[0])
  50. return arr
  51. def returnBars(arr, n):
  52. &#34;&#34;&#34;Calculates the 10th-90th percentile running confidence interval
  53. Parameters:
  54. arr (arr): The array to calculate error bars for
  55. n (int): The smoothing of the confidence interval
  56. Returns:
  57. The smoothed running confidence interval
  58. &#34;&#34;&#34;
  59. r = pandas.Series(arr).rolling(window = n, center = False)
  60. s1, s2 = r.quantile(.90), r.quantile(.1)
  61. return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3)
  62. # Load the data saved by the simulating annealing algorithm
  63. log = pickle.load(open(&#39;data/logs/log.pickle&#39;, &#34;rb&#34; ) )[:1400]
  64. # Define the parameters we wish to plot
  65. mask = [0,1,2,3,5,7,8] #Non-fixed parameters
  66. limits = np.array([[0, np.pi], [-np.pi, np.pi],
  67. [0, np.pi], [-np.pi, np.pi],
  68. [.5,1.0], [.55,.8], [.55,.8]])
  69. labels = [r&#39;$i_1$ / rad&#39;, r&#39;$\omega_1$ / rad&#39;,
  70. r&#39;$i_2$ / rad&#39;, r&#39;$\omega_2$ / rad&#39;,
  71. &#39;e&#39;, r&#39;$R_1$&#39;, r&#39;$R_2$&#39;, r&#39;$\mu$&#39;]
  72. ticks = [[0, np.pi], [-np.pi,0, np.pi],
  73. [0, np.pi],[-np.pi, 0, np.pi],
  74. [.5, 1.0], [.55, .8], [.55, .8]]
  75. ticklabels = [[0,r&#39;$\pi$&#39;],[r&#39;$-\pi$&#39;,0,r&#39;$\pi$&#39;],
  76. [0,r&#39;$\pi$&#39;],[r&#39;$-\pi$&#39;,0,r&#39;$\pi$&#39;],
  77. [&#39;.5&#39;,&#39;1.0&#39;], [&#39;.55&#39;,&#39;.8&#39;], [&#39;.55&#39;,&#39;.8&#39;]]
  78. # Mask away the parameters we don&#39;t want to plot
  79. scores = np.array([l[0] for l in log])
  80. paramss = np.array([l[1] for l in log])[:,mask]
  81. # Fix conventions for inclination
  82. paramss[:,0] = paramss[:,0] - np.pi
  83. paramss[:,2] = np.pi - paramss[:,2]
  84. # Start plotting
  85. i = np.arange(len(log))
  86. f, axs = plt.subplots(1+len(paramss[0]), 1, figsize=(10, 10),
  87. sharex=True, gridspec_kw = {&#39;height_ratios&#39;:[2., 1., 1, 1, 1, 1, 1, 1]})
  88. plt.tight_layout()
  89. utils.stylizePlot(axs)
  90. # Plot metric
  91. axs[0].scatter(i, scores, marker=&#39;x&#39;, c=&#39;black&#39;, s=5, linewidth=.5)
  92. axs[0].fill_between(i[20:], *returnBars(scores, 20), color=&#39;r&#39;, alpha=.2)
  93. utils.setSize(axs[0], x=(0, None), y=(0.8, None))
  94. utils.setAxes(axs[0], y=&#39;Metric&#39;)
  95. # Get twin axis to mark temperature in it
  96. ax2 = axs[0].twiny()
  97. ax2.set_xscale(&#39;log&#39;)
  98. ax2.set_xlabel(&#39;Temperature&#39;, fontsize=14)
  99. ax2.invert_xaxis()
  100. ax2.set_xlim((.25, 0.015129))
  101. ax2.set_xticks([.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01])
  102. ax2.set_xticklabels([str(i)
  103. for i in [.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01]])
  104. # Plot parameters one by one
  105. for j in range(0, len(paramss[0])):
  106. utils.setSize(axs[j+1], x=(0, len(log)), y=limits[j])
  107. axs[j+1].set_ylabel(labels[j], fontsize=14)
  108. axs[j+1].set_yticks(ticks[j])
  109. axs[j+1].set_yticklabels(ticklabels[j])
  110. # Be careful plotting cyclic parameters
  111. derolled = deroll(paramss[:,j], limits[j], start=500)
  112. bar1, bar2 = returnBars(paramss[:,j], 20)
  113. for k in range(-3, 3): #
  114. # Plot the confidence intervals an data multiple times
  115. # to deal with cyclic parameters
  116. axs[j+1].scatter(i, derolled + k*(limits[j][1]-limits[j][0]),
  117. marker=&#39;x&#39;, c=&#39;black&#39;, s=5, linewidth=.5)
  118. axs[j+1].fill_between(i[20:], bar1 + k*(limits[j][1]-limits[j][0]),
  119. bar2 + k*(limits[j][1]-limits[j][0]), color=&#39;r&#39;, alpha=.2)
  120. f.align_ylabels(axs[:])
  121. axs[-1].set_xlabel(&#39;Iteration&#39;, fontsize=14)
  122. plt.show()</code></pre>
  123. </details>
  124. </section>
  125. <section>
  126. </section>
  127. <section>
  128. </section>
  129. <section>
  130. <h2 class="section-title" id="header-functions">Functions</h2>
  131. <dl>
  132. <dt id="analysis.simulatedAnnealing.deroll"><code class="name flex">
  133. <span>def <span class="ident">deroll</span></span>(<span>arr, limits, start=0)</span>
  134. </code></dt>
  135. <dd>
  136. <section class="desc"><p>Derolls a log array. It returns a likely guess of what an array would
  137. have been before applying a mod operator to bring it into the limits
  138. region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
  139. return [0.5, 0.7, 0.9, 1.1].</p>
  140. <h2 id="parameters">Parameters</h2>
  141. <dl>
  142. <dt><strong><code>arr</code></strong> :&ensp;<code>array</code></dt>
  143. <dd>array to deroll</dd>
  144. <dt><strong><code>limit</code></strong> :&ensp;<code>tuple</code></dt>
  145. <dd>(lower limit, upper limit)</dd>
  146. <dt><strong><code>start</code></strong> :&ensp;<code>int</code></dt>
  147. <dd>the first start values of the array will not be derolled</dd>
  148. </dl>
  149. <h2 id="returns">Returns</h2>
  150. <p>The derolled array.</p></section>
  151. <details class="source">
  152. <summary>Source code</summary>
  153. <pre><code class="python">def deroll(arr, limits, start=0):
  154. &#34;&#34;&#34;Derolls a log array. It returns a likely guess of what an array would
  155. have been before applying a mod operator to bring it into the limits
  156. region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
  157. return [0.5, 0.7, 0.9, 1.1].
  158. Parameters:
  159. arr (array): array to deroll
  160. limit (tuple): (lower limit, upper limit)
  161. start (int): the first start values of the array will not be derolled
  162. Returns:
  163. The derolled array.
  164. &#34;&#34;&#34;
  165. for i in range(start,len(arr)-1): # Do not deroll before start
  166. if np.abs(arr[i+1]-arr[i]) &gt; (limits[1]-limits[0])/2:
  167. # Continue the array in the closest possible way
  168. if arr[i+1]&gt;arr[i]: arr[i+1:] -= (limits[1]-limits[0])
  169. else: arr[i+1:] += (limits[1]-limits[0])
  170. return arr</code></pre>
  171. </details>
  172. </dd>
  173. <dt id="analysis.simulatedAnnealing.returnBars"><code class="name flex">
  174. <span>def <span class="ident">returnBars</span></span>(<span>arr, n)</span>
  175. </code></dt>
  176. <dd>
  177. <section class="desc"><p>Calculates the 10th-90th percentile running confidence interval</p>
  178. <h2 id="parameters">Parameters</h2>
  179. <dl>
  180. <dt><strong><code>arr</code></strong> :&ensp;<code>arr</code></dt>
  181. <dd>The array to calculate error bars for</dd>
  182. <dt><strong><code>n</code></strong> :&ensp;<code>int</code></dt>
  183. <dd>The smoothing of the confidence interval</dd>
  184. </dl>
  185. <h2 id="returns">Returns</h2>
  186. <p>The smoothed running confidence interval</p></section>
  187. <details class="source">
  188. <summary>Source code</summary>
  189. <pre><code class="python">def returnBars(arr, n):
  190. &#34;&#34;&#34;Calculates the 10th-90th percentile running confidence interval
  191. Parameters:
  192. arr (arr): The array to calculate error bars for
  193. n (int): The smoothing of the confidence interval
  194. Returns:
  195. The smoothed running confidence interval
  196. &#34;&#34;&#34;
  197. r = pandas.Series(arr).rolling(window = n, center = False)
  198. s1, s2 = r.quantile(.90), r.quantile(.1)
  199. return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3)</code></pre>
  200. </details>
  201. </dd>
  202. </dl>
  203. </section>
  204. <section>
  205. </section>
  206. </article>
  207. <nav id="sidebar">
  208. <h1>Index</h1>
  209. <div class="toc">
  210. <ul></ul>
  211. </div>
  212. <ul id="index">
  213. <li><h3><a href="#header-functions">Functions</a></h3>
  214. <ul class="">
  215. <li><code><a title="analysis.simulatedAnnealing.deroll" href="#analysis.simulatedAnnealing.deroll">deroll</a></code></li>
  216. <li><code><a title="analysis.simulatedAnnealing.returnBars" href="#analysis.simulatedAnnealing.returnBars">returnBars</a></code></li>
  217. </ul>
  218. </li>
  219. </ul>
  220. </nav>
  221. </main>
  222. <footer id="footer">
  223. <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
  224. </footer>
  225. <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  226. <script>hljs.initHighlightingOnLoad()</script>
  227. </body>
  228. </html>