123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- """Defines the possible routines for computing the gravitational forces in the
- simulation.
- All the methods in this file require a position (n, 3) vector, a mass (n, )
- vector and an optional softening scale float."""
- import ctypes
- import numpy.ctypeslib as ctl
- import numpy as np
- from numba import jit
- def bruteForce(r_vec, mass, soft=0.):
- """Calculates the acceleration generated by a set of masses on themselves.
- Complexity O(n*m) where n is the total number of masses and m is the
- number of massive particles.
- Parameters:
- r_vec (array): list of particles positions.
- Shape (n, 3) where n is the number of particles
- mass (array): list of particles masses.
- Shape (n,)
- soft (float): characteristic plummer softening length scale
- Returns:
- forces (array): list of forces acting on each particle.
- Shape (n, 3)
- """
- # Only calculate forces from massive particles
- mask = mass!=0
- massMassive = mass[mask]
- rMassive_vec = r_vec[mask]
- # x m x 1 matrix (m = number of massive particles) for broadcasting
- mass_mat = massMassive.reshape(1, -1, 1)
- # Calculate displacements
- # r_ten is the direction of the pairwise displacements. Shape (n, m, 3)
- # r_mat is the absolute distance of the pairwise displacements. (n, m, 1)
- r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
- r_mat = np.linalg.norm(r_ten, axis=-1, keepdims=True)
- # Avoid division by zeros
- # $a = M / (r + \epsilon)^2$, where $\epsilon$ is the softening scale
- # r_ten/r_mat gives the direction unit vector
- accel = np.divide(r_ten * mass_mat/(r_mat+soft)**2, r_mat,
- where=r_ten.astype(bool), out=r_ten) # Reuse memory from r_ten
- return accel.sum(axis=1) # Add all forces on each particle
- @jit(nopython=True) # Numba annotation
- def bruteForceNumba(r_vec, mass, soft=0.):
- """Calculates the acceleration generated by a set of masses on themselves.
- It is done in the same way as in bruteForce, but this
- method is ran through Numba"""
- mask = mass!=0
- massMassive = mass[mask]
- rMassive_vec = r_vec[mask]
- mass_mat = massMassive.reshape(1, -1, 1)
- r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
- # Avoid np.linalg.norm to allow Numba optimizations
- r_mat = np.sqrt(r_ten[:,:,0:1]**2 + r_ten[:,:,1:2]**2 + r_ten[:,:,2:3]**2)
- r_mat = np.where(r_mat == 0, np.ones_like(r_mat), r_mat)
- accel = r_ten/r_mat * mass_mat/(r_mat+soft)**2
- return accel.sum(axis=1) # Add all forces in each particle
- @jit(nopython=True) # Numba annotation
- def bruteForceNumbaOptimized(r_vec, mass, soft=0.):
- """Calculates the acceleration generated by a set of masses on themselves.
- This is optimized for high performance with Numba. All massive particles
- must appear first."""
- accel = np.zeros_like(r_vec)
- # Use superposition to add all the contributions
- n = r_vec.shape[0] # Number of particles
- delta = np.zeros((3,)) # Only allocate this once
- for i in range(n):
- # Only consider pairs with at least one massive particle i
- if mass[i] == 0: break
- for j in range(i+1, n):
- # Explicitely separate components for high performance
- # i.e. do not do delta = r_vec[j] - r_vec[i]
- # (The effect of this is VERY relevant (x10) and has to do with
- # memory reallocation) Numba will vectorize the loops.
- for k in range(3): delta[k] = r_vec[j,k] - r_vec[i,k]
- r = np.sqrt(delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2])
- tripler = (r+soft)**2 * r
-
- # Compute acceleration on first particle
- mr3inv = mass[i]/(tripler)
- # Again, do NOT do accel[j] -= mr3inv * delta
- for k in range(3): accel[j,k] -= mr3inv * delta[k]
-
- # Compute acceleration on second particle
- # For pairs with one massless particle, no reaction force
- if mass[j] == 0: break
- # Otherwise, opposite direction (+)
- mr3inv = mass[j]/(tripler)
- for k in range(3): accel[i,k] += mr3inv * delta[k]
- return accel
- # C++ interface, load library
- ACCLIB = None
- def loadCPPLib():
- """Loads the C++ shared library to the global variable ACCLIB. Must be
- called before using the library."""
- global ACCLIB
- ACCLIB = ctypes.CDLL('cpp/acclib.so')
- # Define appropiate types for library functions
- doublepp = np.ctypeslib.ndpointer(dtype=np.uintp) # double**
- doublep = ctl.ndpointer(np.float64, flags='aligned, c_contiguous')#double*
- # Check cpp/acclib.cpp for function signatures
- ACCLIB.bruteForceCPP.argtypes = [doublepp, doublep,
- ctypes.c_int, ctypes.c_double]
- ACCLIB.barnesHutCPP.argtypes = [doublepp, doublep,
- ctypes.c_int, ctypes.c_double, ctypes.c_double,
- ctypes.c_double, ctypes.c_double, ctypes.c_double]
- def bruteForceCPP(r_vec, m_vec, soft=0.):
- """Calculates the acceleration generated by a set of masses on themselves.
- This is ran in a shared C++ library through Brute Force (pairwise sums)
- Massive particles must appear first."""
- # Convert array to data required by C++ library
- if ACCLIB is None: loadCPPLib() # Singleton pattern
- # Change type to be appropiate for calling library
- r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
- * r_vec.strides[0]).astype(np.uintp)
- # Set return type as double*
- ACCLIB.bruteForceCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
- shape=(r_vec.shape[0]*3,))
- # Call the C++ function: double* bruteForceCPP
- accel = ACCLIB.bruteForceCPP(r_vec_c, m_vec, r_vec.shape[0], soft)
- # Change shape to get the expected Numpy array (n, 3)
- accel.shape = (-1, 3)
- return accel
- def barnesHutCPP(r_vec, m_vec, soft=0.):
- """Calculates the acceleration generated by a set of masses on themselves.
- This is ran in a shared C++ library using a BarnesHut tree"""
- # Convert array to data required by C++ library
- if ACCLIB is None: loadCPPLib() # Singleton pattern
- # Change type to be appropiate for calling library
- r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
- * r_vec.strides[0]).astype(np.uintp)
- # Set return type as double*
- ACCLIB.barnesHutCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
- shape=(r_vec.shape[0]*3,))
- # Explicitely pass the corner and size of the box for the top node
- px, py, pz = np.min(r_vec, axis=0)
- size = np.max(np.max(r_vec, axis=0) - np.min(r_vec, axis=0))
- # Call the C++ function: double* barnesHutCPP
- accel = ACCLIB.barnesHutCPP(r_vec_c, m_vec, r_vec.shape[0],
- size, px, py, pz, soft)
- # Change shape to get the expected Numpy array (n, 3)
- accel.shape = (-1, 3)
- return accel
|