123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- <!doctype html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
- <meta name="generator" content="pdoc 0.5.2" />
- <title>analysis.simulatedAnnealing API documentation</title>
- <meta name="description" content="Plots the evolution of the simulated annealing algorithm from a log file" />
- <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
- <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
- <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
- <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
- <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
- <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
- </head>
- <body>
- <main>
- <article id="content">
- <header>
- <h1 class="title"><code>analysis.simulatedAnnealing</code> module</h1>
- </header>
- <section id="section-intro">
- <p>Plots the evolution of the simulated annealing algorithm from a log file</p>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">"""Plots the evolution of the simulated annealing algorithm from a log file"""
- import matplotlib.pyplot as plt
- import numpy as np
- import pickle
- import pandas
- from scipy.signal import savgol_filter
- from analysis import utils
- def deroll(arr, limits, start=0):
- """Derolls a log array. It returns a likely guess of what an array would
- have been before applying a mod operator to bring it into the limits
- region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
- return [0.5, 0.7, 0.9, 1.1].
- Parameters:
- arr (array): array to deroll
- limit (tuple): (lower limit, upper limit)
- start (int): the first start values of the array will not be derolled
- Returns:
- The derolled array.
- """
- for i in range(start,len(arr)-1): # Do not deroll before start
- if np.abs(arr[i+1]-arr[i]) > (limits[1]-limits[0])/2:
- # Continue the array in the closest possible way
- if arr[i+1]>arr[i]: arr[i+1:] -= (limits[1]-limits[0])
- else: arr[i+1:] += (limits[1]-limits[0])
- return arr
- def returnBars(arr, n):
- """Calculates the 10th-90th percentile running confidence interval
- Parameters:
- arr (arr): The array to calculate error bars for
- n (int): The smoothing of the confidence interval
- Returns:
- The smoothed running confidence interval
- """
- r = pandas.Series(arr).rolling(window = n, center = False)
- s1, s2 = r.quantile(.90), r.quantile(.1)
- return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3)
- # Load the data saved by the simulating annealing algorithm
- log = pickle.load(open('data/logs/log.pickle', "rb" ) )[:1400]
- # Define the parameters we wish to plot
- mask = [0,1,2,3,5,7,8] #Non-fixed parameters
- limits = np.array([[0, np.pi], [-np.pi, np.pi],
- [0, np.pi], [-np.pi, np.pi],
- [.5,1.0], [.55,.8], [.55,.8]])
- labels = [r'$i_1$ / rad', r'$\omega_1$ / rad',
- r'$i_2$ / rad', r'$\omega_2$ / rad',
- 'e', r'$R_1$', r'$R_2$', r'$\mu$']
- ticks = [[0, np.pi], [-np.pi,0, np.pi],
- [0, np.pi],[-np.pi, 0, np.pi],
- [.5, 1.0], [.55, .8], [.55, .8]]
- ticklabels = [[0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'],
- [0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'],
- ['.5','1.0'], ['.55','.8'], ['.55','.8']]
- # Mask away the parameters we don't want to plot
- scores = np.array([l[0] for l in log])
- paramss = np.array([l[1] for l in log])[:,mask]
- # Fix conventions for inclination
- paramss[:,0] = paramss[:,0] - np.pi
- paramss[:,2] = np.pi - paramss[:,2]
- # Start plotting
- i = np.arange(len(log))
- f, axs = plt.subplots(1+len(paramss[0]), 1, figsize=(10, 10),
- sharex=True, gridspec_kw = {'height_ratios':[2., 1., 1, 1, 1, 1, 1, 1]})
- plt.tight_layout()
- utils.stylizePlot(axs)
- # Plot metric
- axs[0].scatter(i, scores, marker='x', c='black', s=5, linewidth=.5)
- axs[0].fill_between(i[20:], *returnBars(scores, 20), color='r', alpha=.2)
- utils.setSize(axs[0], x=(0, None), y=(0.8, None))
- utils.setAxes(axs[0], y='Metric')
- # Get twin axis to mark temperature in it
- ax2 = axs[0].twiny()
- ax2.set_xscale('log')
- ax2.set_xlabel('Temperature', fontsize=14)
- ax2.invert_xaxis()
- ax2.set_xlim((.25, 0.015129))
- ax2.set_xticks([.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01])
- ax2.set_xticklabels([str(i)
- for i in [.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01]])
- # Plot parameters one by one
- for j in range(0, len(paramss[0])):
- utils.setSize(axs[j+1], x=(0, len(log)), y=limits[j])
- axs[j+1].set_ylabel(labels[j], fontsize=14)
- axs[j+1].set_yticks(ticks[j])
- axs[j+1].set_yticklabels(ticklabels[j])
- # Be careful plotting cyclic parameters
- derolled = deroll(paramss[:,j], limits[j], start=500)
- bar1, bar2 = returnBars(paramss[:,j], 20)
- for k in range(-3, 3): #
- # Plot the confidence intervals an data multiple times
- # to deal with cyclic parameters
- axs[j+1].scatter(i, derolled + k*(limits[j][1]-limits[j][0]),
- marker='x', c='black', s=5, linewidth=.5)
- axs[j+1].fill_between(i[20:], bar1 + k*(limits[j][1]-limits[j][0]),
- bar2 + k*(limits[j][1]-limits[j][0]), color='r', alpha=.2)
- f.align_ylabels(axs[:])
- axs[-1].set_xlabel('Iteration', fontsize=14)
- plt.show()</code></pre>
- </details>
- </section>
- <section>
- </section>
- <section>
- </section>
- <section>
- <h2 class="section-title" id="header-functions">Functions</h2>
- <dl>
- <dt id="analysis.simulatedAnnealing.deroll"><code class="name flex">
- <span>def <span class="ident">deroll</span></span>(<span>arr, limits, start=0)</span>
- </code></dt>
- <dd>
- <section class="desc"><p>Derolls a log array. It returns a likely guess of what an array would
- have been before applying a mod operator to bring it into the limits
- region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
- return [0.5, 0.7, 0.9, 1.1].</p>
- <h2 id="parameters">Parameters</h2>
- <dl>
- <dt><strong><code>arr</code></strong> : <code>array</code></dt>
- <dd>array to deroll</dd>
- <dt><strong><code>limit</code></strong> : <code>tuple</code></dt>
- <dd>(lower limit, upper limit)</dd>
- <dt><strong><code>start</code></strong> : <code>int</code></dt>
- <dd>the first start values of the array will not be derolled</dd>
- </dl>
- <h2 id="returns">Returns</h2>
- <p>The derolled array.</p></section>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">def deroll(arr, limits, start=0):
- """Derolls a log array. It returns a likely guess of what an array would
- have been before applying a mod operator to bring it into the limits
- region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would
- return [0.5, 0.7, 0.9, 1.1].
- Parameters:
- arr (array): array to deroll
- limit (tuple): (lower limit, upper limit)
- start (int): the first start values of the array will not be derolled
- Returns:
- The derolled array.
- """
- for i in range(start,len(arr)-1): # Do not deroll before start
- if np.abs(arr[i+1]-arr[i]) > (limits[1]-limits[0])/2:
- # Continue the array in the closest possible way
- if arr[i+1]>arr[i]: arr[i+1:] -= (limits[1]-limits[0])
- else: arr[i+1:] += (limits[1]-limits[0])
- return arr</code></pre>
- </details>
- </dd>
- <dt id="analysis.simulatedAnnealing.returnBars"><code class="name flex">
- <span>def <span class="ident">returnBars</span></span>(<span>arr, n)</span>
- </code></dt>
- <dd>
- <section class="desc"><p>Calculates the 10th-90th percentile running confidence interval</p>
- <h2 id="parameters">Parameters</h2>
- <dl>
- <dt><strong><code>arr</code></strong> : <code>arr</code></dt>
- <dd>The array to calculate error bars for</dd>
- <dt><strong><code>n</code></strong> : <code>int</code></dt>
- <dd>The smoothing of the confidence interval</dd>
- </dl>
- <h2 id="returns">Returns</h2>
- <p>The smoothed running confidence interval</p></section>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">def returnBars(arr, n):
- """Calculates the 10th-90th percentile running confidence interval
- Parameters:
- arr (arr): The array to calculate error bars for
- n (int): The smoothing of the confidence interval
- Returns:
- The smoothed running confidence interval
- """
- r = pandas.Series(arr).rolling(window = n, center = False)
- s1, s2 = r.quantile(.90), r.quantile(.1)
- return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3)</code></pre>
- </details>
- </dd>
- </dl>
- </section>
- <section>
- </section>
- </article>
- <nav id="sidebar">
- <h1>Index</h1>
- <div class="toc">
- <ul></ul>
- </div>
- <ul id="index">
- <li><h3><a href="#header-functions">Functions</a></h3>
- <ul class="">
- <li><code><a title="analysis.simulatedAnnealing.deroll" href="#analysis.simulatedAnnealing.deroll">deroll</a></code></li>
- <li><code><a title="analysis.simulatedAnnealing.returnBars" href="#analysis.simulatedAnnealing.returnBars">returnBars</a></code></li>
- </ul>
- </li>
- </ul>
- </nav>
- </main>
- <footer id="footer">
- <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
- </footer>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
- <script>hljs.initHighlightingOnLoad()</script>
- </body>
- </html>
|