123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- <!doctype html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
- <meta name="generator" content="pdoc 0.5.2" />
- <title>analysis.segmentation API documentation</title>
- <meta name="description" content="Segmentation algorithm used to identify the different structures
- that are formed in the encounter. This file can be called from the
- command line to …" />
- <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
- <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
- <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
- <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
- <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
- <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
- </head>
- <body>
- <main>
- <article id="content">
- <header>
- <h1 class="title"><code>analysis.segmentation</code> module</h1>
- </header>
- <section id="section-intro">
- <p>Segmentation algorithm used to identify the different structures
- that are formed in the encounter. This file can be called from the
- command line to make an illustrative plot of the algorithm.</p>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">"""Segmentation algorithm used to identify the different structures
- that are formed in the encounter. This file can be called from the
- command line to make an illustrative plot of the algorithm.
- """
- import numpy as np
- import matplotlib.pyplot as plt
- import matplotlib.patches as patches
- import utils
- def segmentEncounter(data, plot=False, mode='all'):
- """Segment the encounter into tail, bridge, orbitting and
- stolen particles as described in the report.
- Parameters:
- data: A data instance as saved by the simulation to a pickle file
- plot: If true the segmentation will be plotted and shown. Highly
- useful for debugging.
- mode (string): If mode is 'all' all parts of the encounter will be
- identified. If mode is 'bridge' only the bridge will be
- identified. This is useful when there may be no tail.
- Returns:
- masks (tupple): tupple of array corresponding to the masks of the
- (bridge, stolen, orbitting, tail) particles. One can then use
- e.g. data['r_vec'][bridgeMask].
- shape (tupple): tupple of (distances, angles) as measured from the
- center of mass and with respect to the x axis. They define the
- shape of the tail
- length (float): total length of the tail.
- """
- nRings = 100 # number of rings to use when segmenting the data
- # Localize the central masses
- r_vec = data['r_vec']
- centers = r_vec[data['type'][:,0]=='center']
- rCenters_vec = centers[1] - centers[0]
- rCenters = np.linalg.norm(rCenters_vec)
- rCenters_unit = rCenters_vec/np.linalg.norm(rCenters_vec)
- # Take particles to be on the tail a priori and
- # remove them as they are found in other structures
- particlesLeft = np.arange(0, len(r_vec))
- if plot:
- colour = '#c40f4c'
- f, axs = plt.subplots(1, 3, figsize=(9, 4), sharey=False)
- f.subplots_adjust(hspace=0, wspace=0)
- axs[0].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
- axs[0].axis('equal')
- utils.plotCenterMasses(axs[0], data)
- axs[0].axis('off')
- # Step 1: project points to see if they are part of the bridge
- parallelProjection = np.dot(r_vec - centers[0], rCenters_unit)
- perpendicularProjection = np.linalg.norm(r_vec - centers[0][np.newaxis]
- - parallelProjection[:,np.newaxis] * rCenters_unit[np.newaxis], axis=-1)
- bridgeMask = np.logical_and(np.logical_and(0.3*rCenters < parallelProjection,
- parallelProjection < .7*rCenters), perpendicularProjection < 2)
- # Remove the bridge
- notInBridge = np.logical_not(bridgeMask)
- r_vec = r_vec[notInBridge]
- particlesLeft = particlesLeft[notInBridge]
- if mode == 'bridge':
- return (bridgeMask, None, None, None), None, None
- # Step 2: select stolen particles by checking distance to centers
- stolenMask = (np.linalg.norm(r_vec - centers[0][np.newaxis], axis=-1)
- > np.linalg.norm(r_vec - centers[1][np.newaxis], axis=-1))
- # Remove the stolen part
- notStolen = np.logical_not(stolenMask)
- r_vec = r_vec[notStolen]
- particlesLeft, stolenMask = particlesLeft[notStolen], particlesLeft[stolenMask]
- # Step 3: segment data into concentric rings (spherical shells really)
- r_vec = r_vec - centers[0]
- r = np.linalg.norm(r_vec, axis=-1)
- edges = np.linspace(0, 30, nRings) # nRings concentric spheres
- indices = np.digitize(r, edges) # Classify particles into shells
- if plot:
- axs[1].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=.1, s=.1)
- axs[1].axis('equal')
- axs[1].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
- axs[1].axis('off')
-
- # Step 4: find start of tail
- start = None
- for i in range(1, nRings+1):
- rMean = np.mean(r[indices==i])
- rMean_vec = np.mean(r_vec[indices==i], axis=0)
- parameter = np.linalg.norm(rMean_vec)/rMean
- if plot:
- circ = patches.Circle((0,0), edges[i-1], linewidth=0.5,edgecolor='black',facecolor='none', alpha=.7)
- axs[1].add_patch(circ)
- txtxy = edges[i-1] * np.array([np.sin(i/13), np.cos(i/13)])
- axs[1].annotate("{:.2f}".format(parameter), xy=txtxy, backgroundcolor='#ffffff55')
-
- if start is None and parameter>.8 :
- start = i #Here starts the tail
- startDirection = rMean_vec/np.linalg.norm(rMean_vec)
- if not plot: break;
- if start is None: #abort if nothing found
- raise Exception('Could not identify tail')
- # Step 5: remove all circles before start
- inInnerRings = indices < start
- # Remove particles on the opposite direction to startDirection.
- # in the now innermost 5 rings. Likely traces of the bridge.
- oppositeDirection = np.dot(r_vec, startDirection) < 0
- in5InnermostRings = indices <= start+5
- orbitting = np.logical_or(inInnerRings,
- np.logical_and(oppositeDirection, in5InnermostRings))
- orbittingMask = particlesLeft[orbitting]
- r_vec = r_vec[np.logical_not(orbitting)]
- tailMask = particlesLeft[np.logical_not(orbitting)]
- if plot:
- axs[2].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
- axs[2].axis('equal')
- axs[2].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
- axs[2].axis('off')
- # Step 6: measure tail length and shape
- r = np.linalg.norm(r_vec, axis=-1)
- indices = np.digitize(r, edges)
- # Make list of barycenters
- points = [list(np.mean(r_vec[indices==i], axis=0))
- for i in range(1, nRings) if len(r_vec[indices==i])!=0]
- points = np.array(points)
- # Calculate total length
- lengths = np.sqrt(np.sum(np.diff(points, axis=0)**2, axis=1))
- length = np.sum(lengths)
- # Shape (for 2D only)
- angles = np.arctan2(points[:,1], points[:,0])
- distances = np.linalg.norm(points, axis=-1)
- shape = (distances, angles)
- if plot:
- axs[2].plot(points[:,0], points[:,1], c='black', linewidth=0.5, marker='+')
- if plot:
- plt.show()
- return (bridgeMask, stolenMask, orbittingMask, tailMask), shape, length
- if __name__ == "__main__":
- data = utils.loadData('200mass', 10400)
- segmentEncounter(data, plot=True)</code></pre>
- </details>
- </section>
- <section>
- </section>
- <section>
- </section>
- <section>
- <h2 class="section-title" id="header-functions">Functions</h2>
- <dl>
- <dt id="analysis.segmentation.segmentEncounter"><code class="name flex">
- <span>def <span class="ident">segmentEncounter</span></span>(<span>data, plot=False, mode='all')</span>
- </code></dt>
- <dd>
- <section class="desc"><p>Segment the encounter into tail, bridge, orbitting and
- stolen particles as described in the report.</p>
- <h2 id="parameters">Parameters</h2>
- <dl>
- <dt><strong><code>data</code></strong></dt>
- <dd>A data instance as saved by the simulation to a pickle file</dd>
- <dt><strong><code>plot</code></strong></dt>
- <dd>If true the segmentation will be plotted and shown. Highly
- useful for debugging.</dd>
- <dt><strong><code>mode</code></strong> : <code>string</code></dt>
- <dd>If mode is 'all' all parts of the encounter will be
- identified. If mode is 'bridge' only the bridge will be
- identified. This is useful when there may be no tail.</dd>
- </dl>
- <h2 id="returns">Returns</h2>
- <dl>
- <dt><strong><code>masks</code></strong> : <code>tupple</code></dt>
- <dd>tupple of array corresponding to the masks of the
- (bridge, stolen, orbitting, tail) particles. One can then use
- e.g. data['r_vec'][bridgeMask].</dd>
- <dt><strong><code>shape</code></strong> : <code>tupple</code></dt>
- <dd>tupple of (distances, angles) as measured from the
- center of mass and with respect to the x axis. They define the
- shape of the tail</dd>
- <dt><strong><code>length</code></strong> : <code>float</code></dt>
- <dd>total length of the tail.</dd>
- </dl></section>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">def segmentEncounter(data, plot=False, mode='all'):
- """Segment the encounter into tail, bridge, orbitting and
- stolen particles as described in the report.
- Parameters:
- data: A data instance as saved by the simulation to a pickle file
- plot: If true the segmentation will be plotted and shown. Highly
- useful for debugging.
- mode (string): If mode is 'all' all parts of the encounter will be
- identified. If mode is 'bridge' only the bridge will be
- identified. This is useful when there may be no tail.
- Returns:
- masks (tupple): tupple of array corresponding to the masks of the
- (bridge, stolen, orbitting, tail) particles. One can then use
- e.g. data['r_vec'][bridgeMask].
- shape (tupple): tupple of (distances, angles) as measured from the
- center of mass and with respect to the x axis. They define the
- shape of the tail
- length (float): total length of the tail.
- """
- nRings = 100 # number of rings to use when segmenting the data
- # Localize the central masses
- r_vec = data['r_vec']
- centers = r_vec[data['type'][:,0]=='center']
- rCenters_vec = centers[1] - centers[0]
- rCenters = np.linalg.norm(rCenters_vec)
- rCenters_unit = rCenters_vec/np.linalg.norm(rCenters_vec)
- # Take particles to be on the tail a priori and
- # remove them as they are found in other structures
- particlesLeft = np.arange(0, len(r_vec))
- if plot:
- colour = '#c40f4c'
- f, axs = plt.subplots(1, 3, figsize=(9, 4), sharey=False)
- f.subplots_adjust(hspace=0, wspace=0)
- axs[0].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
- axs[0].axis('equal')
- utils.plotCenterMasses(axs[0], data)
- axs[0].axis('off')
- # Step 1: project points to see if they are part of the bridge
- parallelProjection = np.dot(r_vec - centers[0], rCenters_unit)
- perpendicularProjection = np.linalg.norm(r_vec - centers[0][np.newaxis]
- - parallelProjection[:,np.newaxis] * rCenters_unit[np.newaxis], axis=-1)
- bridgeMask = np.logical_and(np.logical_and(0.3*rCenters < parallelProjection,
- parallelProjection < .7*rCenters), perpendicularProjection < 2)
- # Remove the bridge
- notInBridge = np.logical_not(bridgeMask)
- r_vec = r_vec[notInBridge]
- particlesLeft = particlesLeft[notInBridge]
- if mode == 'bridge':
- return (bridgeMask, None, None, None), None, None
- # Step 2: select stolen particles by checking distance to centers
- stolenMask = (np.linalg.norm(r_vec - centers[0][np.newaxis], axis=-1)
- > np.linalg.norm(r_vec - centers[1][np.newaxis], axis=-1))
- # Remove the stolen part
- notStolen = np.logical_not(stolenMask)
- r_vec = r_vec[notStolen]
- particlesLeft, stolenMask = particlesLeft[notStolen], particlesLeft[stolenMask]
- # Step 3: segment data into concentric rings (spherical shells really)
- r_vec = r_vec - centers[0]
- r = np.linalg.norm(r_vec, axis=-1)
- edges = np.linspace(0, 30, nRings) # nRings concentric spheres
- indices = np.digitize(r, edges) # Classify particles into shells
- if plot:
- axs[1].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=.1, s=.1)
- axs[1].axis('equal')
- axs[1].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
- axs[1].axis('off')
-
- # Step 4: find start of tail
- start = None
- for i in range(1, nRings+1):
- rMean = np.mean(r[indices==i])
- rMean_vec = np.mean(r_vec[indices==i], axis=0)
- parameter = np.linalg.norm(rMean_vec)/rMean
- if plot:
- circ = patches.Circle((0,0), edges[i-1], linewidth=0.5,edgecolor='black',facecolor='none', alpha=.7)
- axs[1].add_patch(circ)
- txtxy = edges[i-1] * np.array([np.sin(i/13), np.cos(i/13)])
- axs[1].annotate("{:.2f}".format(parameter), xy=txtxy, backgroundcolor='#ffffff55')
-
- if start is None and parameter>.8 :
- start = i #Here starts the tail
- startDirection = rMean_vec/np.linalg.norm(rMean_vec)
- if not plot: break;
- if start is None: #abort if nothing found
- raise Exception('Could not identify tail')
- # Step 5: remove all circles before start
- inInnerRings = indices < start
- # Remove particles on the opposite direction to startDirection.
- # in the now innermost 5 rings. Likely traces of the bridge.
- oppositeDirection = np.dot(r_vec, startDirection) < 0
- in5InnermostRings = indices <= start+5
- orbitting = np.logical_or(inInnerRings,
- np.logical_and(oppositeDirection, in5InnermostRings))
- orbittingMask = particlesLeft[orbitting]
- r_vec = r_vec[np.logical_not(orbitting)]
- tailMask = particlesLeft[np.logical_not(orbitting)]
- if plot:
- axs[2].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
- axs[2].axis('equal')
- axs[2].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
- axs[2].axis('off')
- # Step 6: measure tail length and shape
- r = np.linalg.norm(r_vec, axis=-1)
- indices = np.digitize(r, edges)
- # Make list of barycenters
- points = [list(np.mean(r_vec[indices==i], axis=0))
- for i in range(1, nRings) if len(r_vec[indices==i])!=0]
- points = np.array(points)
- # Calculate total length
- lengths = np.sqrt(np.sum(np.diff(points, axis=0)**2, axis=1))
- length = np.sum(lengths)
- # Shape (for 2D only)
- angles = np.arctan2(points[:,1], points[:,0])
- distances = np.linalg.norm(points, axis=-1)
- shape = (distances, angles)
- if plot:
- axs[2].plot(points[:,0], points[:,1], c='black', linewidth=0.5, marker='+')
- if plot:
- plt.show()
- return (bridgeMask, stolenMask, orbittingMask, tailMask), shape, length</code></pre>
- </details>
- </dd>
- </dl>
- </section>
- <section>
- </section>
- </article>
- <nav id="sidebar">
- <h1>Index</h1>
- <div class="toc">
- <ul></ul>
- </div>
- <ul id="index">
- <li><h3><a href="#header-functions">Functions</a></h3>
- <ul class="">
- <li><code><a title="analysis.segmentation.segmentEncounter" href="#analysis.segmentation.segmentEncounter">segmentEncounter</a></code></li>
- </ul>
- </li>
- </ul>
- </nav>
- </main>
- <footer id="footer">
- <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
- </footer>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
- <script>hljs.initHighlightingOnLoad()</script>
- </body>
- </html>
|