123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- <!doctype html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
- <meta name="generator" content="pdoc 0.5.2" />
- <title>analysis.ringPlot API documentation</title>
- <meta name="description" content="Make a plot of an encountering with rings (fig 1, fig 3) and
- colour each ring according to the initial distance. It plots a
- prograde equalmass …" />
- <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
- <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
- <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
- <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
- <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
- <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
- </head>
- <body>
- <main>
- <article id="content">
- <header>
- <h1 class="title"><code>analysis.ringPlot</code> module</h1>
- </header>
- <section id="section-intro">
- <p>Make a plot of an encountering with rings (fig 1, fig 3) and
- colour each ring according to the initial distance. It plots a
- prograde equalmass encounter by default.</p>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">"""Make a plot of an encountering with rings (fig 1, fig 3) and
- colour each ring according to the initial distance. It plots a
- prograde equalmass encounter by default.
- """
- import matplotlib.pyplot as plt
- from scipy.interpolate import splprep, splev, interp1d
- from matplotlib import markers
- import numpy as np
- from analysis.colormaps import parula_map
- from analysis import utils
- def plotRings(ax, data, n):
- """Make a ring plot of the data.
- Parameters:
- ax: the matplotlib axis where the data should be plotted
- data: a data dictionary in the format saved by the simulation
- n (int): the number of particles to plot. These will be interpolated
- and can be much higher than those originally in the simulation.
- """
- # Identify all the rings
- rings = np.unique(data['type'][:,1])
- rings = rings[rings!='0']
- # Plot each ring
- for ring, color, in zip(rings,
- parula_map(np.linspace(1.0, 0., len(rings)))):
- xy = data['r_vec'][data['type'][:,1]==ring] #data for this ring
- # Interpolate data (to use opacity to plot local density)
- tck, u = splprep(xy[:,:2].T, u=None, s=0.0, per=1)
- f = interp1d(np.linspace(0,1,len(u)), u, kind='cubic')
- x_new, y_new = splev(f(np.linspace(0,1,n)), tck, der=0)
- #Plot data
- ax.scatter(x_new, y_new, s=2, c=[color], alpha=0.01)
- utils.plotCOM(ax)
- utils.plotCenterMasses(ax, data)
- utils.plotTracks(ax, data['tracks'])
- # Styling
- utils.setAxes(ax, mode='hide')
- ####################################
- ####################################
- # List of times to plot
- ts = [2000, 3000, 3500, 4000, 4900]
- figsize = (12, 4)
- fileName = 'prograde_equalmass'
- f, axs = plt.subplots(1, len(ts), figsize=figsize, sharey=False)
- for t, ax in zip(ts, axs):
- data = utils.loadData(fileName, t)
- plotRings(ax, data, n=10000)
- height, width = 3.0, 3 * 1/len(ts) * figsize[0]/figsize[1]
- utils.setSize(ax, x=(-width, width), y=(-height, height), mode='square')
- f.subplots_adjust(hspace=0, wspace=0)
- plt.show()</code></pre>
- </details>
- </section>
- <section>
- </section>
- <section>
- </section>
- <section>
- <h2 class="section-title" id="header-functions">Functions</h2>
- <dl>
- <dt id="analysis.ringPlot.plotRings"><code class="name flex">
- <span>def <span class="ident">plotRings</span></span>(<span>ax, data, n)</span>
- </code></dt>
- <dd>
- <section class="desc"><p>Make a ring plot of the data.</p>
- <h2 id="parameters">Parameters</h2>
- <dl>
- <dt><strong><code>ax</code></strong></dt>
- <dd>the matplotlib axis where the data should be plotted</dd>
- <dt><strong><code>data</code></strong></dt>
- <dd>a data dictionary in the format saved by the simulation</dd>
- <dt><strong><code>n</code></strong> : <code>int</code></dt>
- <dd>the number of particles to plot. These will be interpolated
- and can be much higher than those originally in the simulation.</dd>
- </dl></section>
- <details class="source">
- <summary>Source code</summary>
- <pre><code class="python">def plotRings(ax, data, n):
- """Make a ring plot of the data.
- Parameters:
- ax: the matplotlib axis where the data should be plotted
- data: a data dictionary in the format saved by the simulation
- n (int): the number of particles to plot. These will be interpolated
- and can be much higher than those originally in the simulation.
- """
- # Identify all the rings
- rings = np.unique(data['type'][:,1])
- rings = rings[rings!='0']
- # Plot each ring
- for ring, color, in zip(rings,
- parula_map(np.linspace(1.0, 0., len(rings)))):
- xy = data['r_vec'][data['type'][:,1]==ring] #data for this ring
- # Interpolate data (to use opacity to plot local density)
- tck, u = splprep(xy[:,:2].T, u=None, s=0.0, per=1)
- f = interp1d(np.linspace(0,1,len(u)), u, kind='cubic')
- x_new, y_new = splev(f(np.linspace(0,1,n)), tck, der=0)
- #Plot data
- ax.scatter(x_new, y_new, s=2, c=[color], alpha=0.01)
- utils.plotCOM(ax)
- utils.plotCenterMasses(ax, data)
- utils.plotTracks(ax, data['tracks'])
- # Styling
- utils.setAxes(ax, mode='hide')</code></pre>
- </details>
- </dd>
- </dl>
- </section>
- <section>
- </section>
- </article>
- <nav id="sidebar">
- <h1>Index</h1>
- <div class="toc">
- <ul></ul>
- </div>
- <ul id="index">
- <li><h3><a href="#header-functions">Functions</a></h3>
- <ul class="">
- <li><code><a title="analysis.ringPlot.plotRings" href="#analysis.ringPlot.plotRings">plotRings</a></code></li>
- </ul>
- </li>
- </ul>
- </nav>
- </main>
- <footer id="footer">
- <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
- </footer>
- <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
- <script>hljs.initHighlightingOnLoad()</script>
- </body>
- </html>
|