acceleration.html 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. <!doctype html>
  2. <html lang="en">
  3. <head>
  4. <meta charset="utf-8">
  5. <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
  6. <meta name="generator" content="pdoc 0.5.2" />
  7. <title>acceleration API documentation</title>
  8. <meta name="description" content="Defines the possible routines for computing the gravitational forces in the
  9. simulation …" />
  10. <link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
  11. <link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
  12. <link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
  13. <style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}#index .two-column{column-count:2}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.name small{font-weight:normal}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
  14. <style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
  15. <style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
  16. </head>
  17. <body>
  18. <main>
  19. <article id="content">
  20. <header>
  21. <h1 class="title"><code>acceleration</code> module</h1>
  22. </header>
  23. <section id="section-intro">
  24. <p>Defines the possible routines for computing the gravitational forces in the
  25. simulation.</p>
  26. <p>All the methods in these file require a position (n, 3) vector, a mass (n, )
  27. vector and an optional softening scale float.</p>
  28. <details class="source">
  29. <summary>Source code</summary>
  30. <pre><code class="python">&#34;&#34;&#34;Defines the possible routines for computing the gravitational forces in the
  31. simulation.
  32. All the methods in these file require a position (n, 3) vector, a mass (n, )
  33. vector and an optional softening scale float.&#34;&#34;&#34;
  34. import ctypes
  35. import numpy.ctypeslib as ctl
  36. import numpy as np
  37. from numba import jit
  38. def bruteForce(r_vec, mass, soft=0.):
  39. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  40. Complexity O(n*m) where n is the total number of masses and m is the
  41. number of massive particles.
  42. Parameters:
  43. r_vec (array): list of particles positions.
  44. Shape (n, 3) where n is the number of particles
  45. mass (array): list of particles masses.
  46. Shape (n,)
  47. soft (float): characteristic plummer softening length scale
  48. Returns:
  49. forces (array): list of forces acting on each particle.
  50. Shape (n, 3)
  51. &#34;&#34;&#34;
  52. # Only calculate forces from massive particles
  53. mask = mass!=0
  54. massMassive = mass[mask]
  55. rMassive_vec = r_vec[mask]
  56. # x m x 1 matrix (m = number of massive particles) for broadcasting
  57. mass_mat = massMassive.reshape(1, -1, 1)
  58. # Calculate displacements
  59. # r_ten is the direction of the pairwise displacements. Shape (n, m, 3)
  60. # r_mat is the absolute distance of the pairwise displacements. (n, m, 1)
  61. r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
  62. r_mat = np.linalg.norm(r_ten, axis=-1, keepdims=True)
  63. # Avoid division by zeros
  64. # $a = M / (r + \epsilon)^2$, where $\epsilon$ is the softening scale
  65. # r_ten/r_mat gives the direction unit vector
  66. accel = np.divide(r_ten * mass_mat/(r_mat+soft)**2, r_mat,
  67. where=r_ten.astype(bool), out=r_ten) # Reuse memory from r_ten
  68. return accel.sum(axis=1) # Add all forces on each particle
  69. @jit(nopython=True) # Numba annotation
  70. def bruteForceNumba(r_vec, mass, soft=0.):
  71. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  72. It is done in the same way as in bruteForce, but this
  73. method is ran through Numba&#34;&#34;&#34;
  74. mask = mass!=0
  75. massMassive = mass[mask]
  76. rMassive_vec = r_vec[mask]
  77. mass_mat = massMassive.reshape(1, -1, 1)
  78. r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
  79. # Avoid np.linalg.norm to allow Numba optimizations
  80. r_mat = np.sqrt(r_ten[:,:,0:1]**2 + r_ten[:,:,1:2]**2 + r_ten[:,:,2:3]**2)
  81. r_mat = np.where(r_mat == 0, np.ones_like(r_mat), r_mat)
  82. accel = r_ten/r_mat * mass_mat/(r_mat+soft)**2
  83. return accel.sum(axis=1) # Add all forces in each particle
  84. @jit(nopython=True) # Numba annotation
  85. def bruteForceNumbaOptimized(r_vec, mass, soft=0.):
  86. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  87. This is optimized for high performance with Numba. All massive particles
  88. must appear first.&#34;&#34;&#34;
  89. accel = np.zeros_like(r_vec)
  90. # Use superposition to add all the contributions
  91. n = r_vec.shape[0] # Number of particles
  92. delta = np.zeros((3,)) # Only allocate this once
  93. for i in range(n):
  94. # Only consider pairs with at least one massive particle i
  95. if mass[i] == 0: break
  96. for j in range(i+1, n):
  97. # Explicitely separate components for high performance
  98. # i.e. do not do delta = r_vec[j] - r_vec[i]
  99. # (The effect of this is VERY relevant (x10) and has to do with
  100. # memory reallocation) Numba will vectorize the loops.
  101. for k in range(3): delta[k] = r_vec[j,k] - r_vec[i,k]
  102. r = np.sqrt(delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2])
  103. tripler = (r+soft)**2 * r
  104. # Compute acceleration on first particle
  105. mr3inv = mass[i]/(tripler)
  106. # Again, do NOT do accel[j] -= mr3inv * delta
  107. for k in range(3): accel[j,k] -= mr3inv * delta[k]
  108. # Compute acceleration on second particle
  109. # For pairs with one massless particle, no reaction force
  110. if mass[j] == 0: break
  111. # Otherwise, opposite direction (+)
  112. mr3inv = mass[j]/(tripler)
  113. for k in range(3): accel[i,k] += mr3inv * delta[k]
  114. return accel
  115. # C++ interface, load library
  116. ACCLIB = None
  117. def loadCPPLib():
  118. &#34;&#34;&#34;Loads the C++ shared library to the global variable ACCLIB. Must be
  119. called before using the library.&#34;&#34;&#34;
  120. global ACCLIB
  121. ACCLIB = ctypes.CDLL(&#39;cpp/acclib.so&#39;)
  122. # Define appropiate types for library functions
  123. doublepp = np.ctypeslib.ndpointer(dtype=np.uintp) # double**
  124. doublep = ctl.ndpointer(np.float64, flags=&#39;aligned, c_contiguous&#39;)#double*
  125. # Check cpp/acclib.cpp for function signatures
  126. ACCLIB.bruteForceCPP.argtypes = [doublepp, doublep,
  127. ctypes.c_int, ctypes.c_double]
  128. ACCLIB.barnesHutCPP.argtypes = [doublepp, doublep,
  129. ctypes.c_int, ctypes.c_double, ctypes.c_double,
  130. ctypes.c_double, ctypes.c_double, ctypes.c_double]
  131. def bruteForceCPP(r_vec, m_vec, soft=0.):
  132. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  133. This is ran in a shared C++ library through Brute Force (pairwise sums)
  134. Massive particles must appear first.&#34;&#34;&#34;
  135. # Convert array to data required by C++ library
  136. if ACCLIB is None: loadCPPLib() # Singleton pattern
  137. # Change type to be appropiate for calling library
  138. r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
  139. * r_vec.strides[0]).astype(np.uintp)
  140. # Set return type as double*
  141. ACCLIB.bruteForceCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
  142. shape=(r_vec.shape[0]*3,))
  143. # Call the C++ function: double* bruteForceCPP
  144. accel = ACCLIB.bruteForceCPP(r_vec_c, m_vec, r_vec.shape[0], soft)
  145. # Change shape to get the expected Numpy array (n, 3)
  146. accel.shape = (-1, 3)
  147. return accel
  148. def barnesHutCPP(r_vec, m_vec, soft=0.):
  149. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  150. This is ran in a shared C++ library using a BarnesHut tree&#34;&#34;&#34;
  151. # Convert array to data required by C++ library
  152. if ACCLIB is None: loadCPPLib() # Singleton pattern
  153. # Change type to be appropiate for calling library
  154. r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
  155. * r_vec.strides[0]).astype(np.uintp)
  156. # Set return type as double*
  157. ACCLIB.barnesHutCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
  158. shape=(r_vec.shape[0]*3,))
  159. # Explicitely pass the corner and size of the box for the top node
  160. px, py, pz = np.min(r_vec, axis=0)
  161. size = np.max(np.max(r_vec, axis=0) - np.min(r_vec, axis=0))
  162. # Call the C++ function: double* barnesHutCPP
  163. accel = ACCLIB.barnesHutCPP(r_vec_c, m_vec, r_vec.shape[0],
  164. size, px, py, pz, soft)
  165. # Change shape to get the expected Numpy array (n, 3)
  166. accel.shape = (-1, 3)
  167. return accel</code></pre>
  168. </details>
  169. </section>
  170. <section>
  171. </section>
  172. <section>
  173. </section>
  174. <section>
  175. <h2 class="section-title" id="header-functions">Functions</h2>
  176. <dl>
  177. <dt id="acceleration.barnesHutCPP"><code class="name flex">
  178. <span>def <span class="ident">barnesHutCPP</span></span>(<span>r_vec, m_vec, soft=0.0)</span>
  179. </code></dt>
  180. <dd>
  181. <section class="desc"><p>Calculates the acceleration generated by a set of masses on themselves.
  182. This is ran in a shared C++ library using a BarnesHut tree</p></section>
  183. <details class="source">
  184. <summary>Source code</summary>
  185. <pre><code class="python">def barnesHutCPP(r_vec, m_vec, soft=0.):
  186. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  187. This is ran in a shared C++ library using a BarnesHut tree&#34;&#34;&#34;
  188. # Convert array to data required by C++ library
  189. if ACCLIB is None: loadCPPLib() # Singleton pattern
  190. # Change type to be appropiate for calling library
  191. r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
  192. * r_vec.strides[0]).astype(np.uintp)
  193. # Set return type as double*
  194. ACCLIB.barnesHutCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
  195. shape=(r_vec.shape[0]*3,))
  196. # Explicitely pass the corner and size of the box for the top node
  197. px, py, pz = np.min(r_vec, axis=0)
  198. size = np.max(np.max(r_vec, axis=0) - np.min(r_vec, axis=0))
  199. # Call the C++ function: double* barnesHutCPP
  200. accel = ACCLIB.barnesHutCPP(r_vec_c, m_vec, r_vec.shape[0],
  201. size, px, py, pz, soft)
  202. # Change shape to get the expected Numpy array (n, 3)
  203. accel.shape = (-1, 3)
  204. return accel</code></pre>
  205. </details>
  206. </dd>
  207. <dt id="acceleration.bruteForce"><code class="name flex">
  208. <span>def <span class="ident">bruteForce</span></span>(<span>r_vec, mass, soft=0.0)</span>
  209. </code></dt>
  210. <dd>
  211. <section class="desc"><p>Calculates the acceleration generated by a set of masses on themselves.
  212. Complexity O(n*m) where n is the total number of masses and m is the
  213. number of massive particles.</p>
  214. <h2 id="parameters">Parameters</h2>
  215. <dl>
  216. <dt><strong><code>r_vec</code></strong> :&ensp;<code>array</code></dt>
  217. <dd>list of particles positions.
  218. Shape (n, 3) where n is the number of particles</dd>
  219. <dt><strong><code>mass</code></strong> :&ensp;<code>array</code></dt>
  220. <dd>list of particles masses.
  221. Shape (n,)</dd>
  222. <dt><strong><code>soft</code></strong> :&ensp;<code>float</code></dt>
  223. <dd>characteristic plummer softening length scale</dd>
  224. </dl>
  225. <h2 id="returns">Returns</h2>
  226. <dl>
  227. <dt><strong><code>forces</code></strong> :&ensp;<code>array</code></dt>
  228. <dd>list of forces acting on each particle.
  229. Shape (n, 3)</dd>
  230. </dl></section>
  231. <details class="source">
  232. <summary>Source code</summary>
  233. <pre><code class="python">def bruteForce(r_vec, mass, soft=0.):
  234. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  235. Complexity O(n*m) where n is the total number of masses and m is the
  236. number of massive particles.
  237. Parameters:
  238. r_vec (array): list of particles positions.
  239. Shape (n, 3) where n is the number of particles
  240. mass (array): list of particles masses.
  241. Shape (n,)
  242. soft (float): characteristic plummer softening length scale
  243. Returns:
  244. forces (array): list of forces acting on each particle.
  245. Shape (n, 3)
  246. &#34;&#34;&#34;
  247. # Only calculate forces from massive particles
  248. mask = mass!=0
  249. massMassive = mass[mask]
  250. rMassive_vec = r_vec[mask]
  251. # x m x 1 matrix (m = number of massive particles) for broadcasting
  252. mass_mat = massMassive.reshape(1, -1, 1)
  253. # Calculate displacements
  254. # r_ten is the direction of the pairwise displacements. Shape (n, m, 3)
  255. # r_mat is the absolute distance of the pairwise displacements. (n, m, 1)
  256. r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
  257. r_mat = np.linalg.norm(r_ten, axis=-1, keepdims=True)
  258. # Avoid division by zeros
  259. # $a = M / (r + \epsilon)^2$, where $\epsilon$ is the softening scale
  260. # r_ten/r_mat gives the direction unit vector
  261. accel = np.divide(r_ten * mass_mat/(r_mat+soft)**2, r_mat,
  262. where=r_ten.astype(bool), out=r_ten) # Reuse memory from r_ten
  263. return accel.sum(axis=1) # Add all forces on each particle</code></pre>
  264. </details>
  265. </dd>
  266. <dt id="acceleration.bruteForceCPP"><code class="name flex">
  267. <span>def <span class="ident">bruteForceCPP</span></span>(<span>r_vec, m_vec, soft=0.0)</span>
  268. </code></dt>
  269. <dd>
  270. <section class="desc"><p>Calculates the acceleration generated by a set of masses on themselves.
  271. This is ran in a shared C++ library through Brute Force (pairwise sums)
  272. Massive particles must appear first.</p></section>
  273. <details class="source">
  274. <summary>Source code</summary>
  275. <pre><code class="python">def bruteForceCPP(r_vec, m_vec, soft=0.):
  276. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  277. This is ran in a shared C++ library through Brute Force (pairwise sums)
  278. Massive particles must appear first.&#34;&#34;&#34;
  279. # Convert array to data required by C++ library
  280. if ACCLIB is None: loadCPPLib() # Singleton pattern
  281. # Change type to be appropiate for calling library
  282. r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
  283. * r_vec.strides[0]).astype(np.uintp)
  284. # Set return type as double*
  285. ACCLIB.bruteForceCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
  286. shape=(r_vec.shape[0]*3,))
  287. # Call the C++ function: double* bruteForceCPP
  288. accel = ACCLIB.bruteForceCPP(r_vec_c, m_vec, r_vec.shape[0], soft)
  289. # Change shape to get the expected Numpy array (n, 3)
  290. accel.shape = (-1, 3)
  291. return accel</code></pre>
  292. </details>
  293. </dd>
  294. <dt id="acceleration.bruteForceNumba"><code class="name flex">
  295. <span>def <span class="ident">bruteForceNumba</span></span>(<span>r_vec, mass, soft=0.0)</span>
  296. </code></dt>
  297. <dd>
  298. <section class="desc"><p>Calculates the acceleration generated by a set of masses on themselves.
  299. It is done in the same way as in bruteForce, but this
  300. method is ran through Numba</p></section>
  301. <details class="source">
  302. <summary>Source code</summary>
  303. <pre><code class="python">@jit(nopython=True) # Numba annotation
  304. def bruteForceNumba(r_vec, mass, soft=0.):
  305. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  306. It is done in the same way as in bruteForce, but this
  307. method is ran through Numba&#34;&#34;&#34;
  308. mask = mass!=0
  309. massMassive = mass[mask]
  310. rMassive_vec = r_vec[mask]
  311. mass_mat = massMassive.reshape(1, -1, 1)
  312. r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
  313. # Avoid np.linalg.norm to allow Numba optimizations
  314. r_mat = np.sqrt(r_ten[:,:,0:1]**2 + r_ten[:,:,1:2]**2 + r_ten[:,:,2:3]**2)
  315. r_mat = np.where(r_mat == 0, np.ones_like(r_mat), r_mat)
  316. accel = r_ten/r_mat * mass_mat/(r_mat+soft)**2
  317. return accel.sum(axis=1) # Add all forces in each particle</code></pre>
  318. </details>
  319. </dd>
  320. <dt id="acceleration.bruteForceNumbaOptimized"><code class="name flex">
  321. <span>def <span class="ident">bruteForceNumbaOptimized</span></span>(<span>r_vec, mass, soft=0.0)</span>
  322. </code></dt>
  323. <dd>
  324. <section class="desc"><p>Calculates the acceleration generated by a set of masses on themselves.
  325. This is optimized for high performance with Numba. All massive particles
  326. must appear first.</p></section>
  327. <details class="source">
  328. <summary>Source code</summary>
  329. <pre><code class="python">@jit(nopython=True) # Numba annotation
  330. def bruteForceNumbaOptimized(r_vec, mass, soft=0.):
  331. &#34;&#34;&#34;Calculates the acceleration generated by a set of masses on themselves.
  332. This is optimized for high performance with Numba. All massive particles
  333. must appear first.&#34;&#34;&#34;
  334. accel = np.zeros_like(r_vec)
  335. # Use superposition to add all the contributions
  336. n = r_vec.shape[0] # Number of particles
  337. delta = np.zeros((3,)) # Only allocate this once
  338. for i in range(n):
  339. # Only consider pairs with at least one massive particle i
  340. if mass[i] == 0: break
  341. for j in range(i+1, n):
  342. # Explicitely separate components for high performance
  343. # i.e. do not do delta = r_vec[j] - r_vec[i]
  344. # (The effect of this is VERY relevant (x10) and has to do with
  345. # memory reallocation) Numba will vectorize the loops.
  346. for k in range(3): delta[k] = r_vec[j,k] - r_vec[i,k]
  347. r = np.sqrt(delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2])
  348. tripler = (r+soft)**2 * r
  349. # Compute acceleration on first particle
  350. mr3inv = mass[i]/(tripler)
  351. # Again, do NOT do accel[j] -= mr3inv * delta
  352. for k in range(3): accel[j,k] -= mr3inv * delta[k]
  353. # Compute acceleration on second particle
  354. # For pairs with one massless particle, no reaction force
  355. if mass[j] == 0: break
  356. # Otherwise, opposite direction (+)
  357. mr3inv = mass[j]/(tripler)
  358. for k in range(3): accel[i,k] += mr3inv * delta[k]
  359. return accel</code></pre>
  360. </details>
  361. </dd>
  362. <dt id="acceleration.loadCPPLib"><code class="name flex">
  363. <span>def <span class="ident">loadCPPLib</span></span>(<span>)</span>
  364. </code></dt>
  365. <dd>
  366. <section class="desc"><p>Loads the C++ shared library to the global variable ACCLIB. Must be
  367. called before using the library.</p></section>
  368. <details class="source">
  369. <summary>Source code</summary>
  370. <pre><code class="python">def loadCPPLib():
  371. &#34;&#34;&#34;Loads the C++ shared library to the global variable ACCLIB. Must be
  372. called before using the library.&#34;&#34;&#34;
  373. global ACCLIB
  374. ACCLIB = ctypes.CDLL(&#39;cpp/acclib.so&#39;)
  375. # Define appropiate types for library functions
  376. doublepp = np.ctypeslib.ndpointer(dtype=np.uintp) # double**
  377. doublep = ctl.ndpointer(np.float64, flags=&#39;aligned, c_contiguous&#39;)#double*
  378. # Check cpp/acclib.cpp for function signatures
  379. ACCLIB.bruteForceCPP.argtypes = [doublepp, doublep,
  380. ctypes.c_int, ctypes.c_double]
  381. ACCLIB.barnesHutCPP.argtypes = [doublepp, doublep,
  382. ctypes.c_int, ctypes.c_double, ctypes.c_double,
  383. ctypes.c_double, ctypes.c_double, ctypes.c_double]</code></pre>
  384. </details>
  385. </dd>
  386. </dl>
  387. </section>
  388. <section>
  389. </section>
  390. </article>
  391. <nav id="sidebar">
  392. <h1>Index</h1>
  393. <div class="toc">
  394. <ul></ul>
  395. </div>
  396. <ul id="index">
  397. <li><h3><a href="#header-functions">Functions</a></h3>
  398. <ul class="">
  399. <li><code><a title="acceleration.barnesHutCPP" href="#acceleration.barnesHutCPP">barnesHutCPP</a></code></li>
  400. <li><code><a title="acceleration.bruteForce" href="#acceleration.bruteForce">bruteForce</a></code></li>
  401. <li><code><a title="acceleration.bruteForceCPP" href="#acceleration.bruteForceCPP">bruteForceCPP</a></code></li>
  402. <li><code><a title="acceleration.bruteForceNumba" href="#acceleration.bruteForceNumba">bruteForceNumba</a></code></li>
  403. <li><code><a title="acceleration.bruteForceNumbaOptimized" href="#acceleration.bruteForceNumbaOptimized">bruteForceNumbaOptimized</a></code></li>
  404. <li><code><a title="acceleration.loadCPPLib" href="#acceleration.loadCPPLib">loadCPPLib</a></code></li>
  405. </ul>
  406. </li>
  407. </ul>
  408. </nav>
  409. </main>
  410. <footer id="footer">
  411. <p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.5.2</a>.</p>
  412. </footer>
  413. <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  414. <script>hljs.initHighlightingOnLoad()</script>
  415. </body>
  416. </html>