"""Plots the evolution of the simulated annealing algorithm from a log file""" import matplotlib.pyplot as plt import numpy as np import pickle import pandas from scipy.signal import savgol_filter from analysis import utils def deroll(arr, limits, start=0): """Derolls a log array. It returns a likely guess of what an array would have been before applying a mod operator to bring it into the limits region. Example, for limits = [0, 1] the array [0.5, 0.7, 0.9, 0.1] would return [0.5, 0.7, 0.9, 1.1]. Parameters: arr (array): array to deroll limit (tuple): (lower limit, upper limit) start (int): the first start values of the array will not be derolled Returns: The derolled array. """ for i in range(start,len(arr)-1): # Do not deroll before start if np.abs(arr[i+1]-arr[i]) > (limits[1]-limits[0])/2: # Continue the array in the closest possible way if arr[i+1]>arr[i]: arr[i+1:] -= (limits[1]-limits[0]) else: arr[i+1:] += (limits[1]-limits[0]) return arr def returnBars(arr, n): """Calculates the 10th-90th percentile running confidence interval Parameters: arr (arr): The array to calculate error bars for n (int): The smoothing of the confidence interval Returns: The smoothed running confidence interval """ r = pandas.Series(arr).rolling(window = n, center = False) s1, s2 = r.quantile(.90), r.quantile(.1) return savgol_filter(s1[n:], 101, 3), savgol_filter(s2[n:], 101, 3) # Load the data saved by the simulating annealing algorithm log = pickle.load(open('data/logs/log.pickle', "rb" ) )[:1400] # Define the parameters we wish to plot mask = [0,1,2,3,5,7,8] #Non-fixed parameters limits = np.array([[0, np.pi], [-np.pi, np.pi], [0, np.pi], [-np.pi, np.pi], [.5,1.0], [.55,.8], [.55,.8]]) labels = [r'$i_1$ / rad', r'$\omega_1$ / rad', r'$i_2$ / rad', r'$\omega_2$ / rad', 'e', r'$R_1$', r'$R_2$', r'$\mu$'] ticks = [[0, np.pi], [-np.pi,0, np.pi], [0, np.pi],[-np.pi, 0, np.pi], [.5, 1.0], [.55, .8], [.55, .8]] ticklabels = [[0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'], [0,r'$\pi$'],[r'$-\pi$',0,r'$\pi$'], ['.5','1.0'], ['.55','.8'], ['.55','.8']] # Mask away the parameters we don't want to plot scores = np.array([l[0] for l in log]) paramss = np.array([l[1] for l in log])[:,mask] # Fix conventions for inclination paramss[:,0] = paramss[:,0] - np.pi paramss[:,2] = np.pi - paramss[:,2] # Start plotting i = np.arange(len(log)) f, axs = plt.subplots(1+len(paramss[0]), 1, figsize=(10, 10), sharex=True, gridspec_kw = {'height_ratios':[2., 1., 1, 1, 1, 1, 1, 1]}) plt.tight_layout() utils.stylizePlot(axs) # Plot metric axs[0].scatter(i, scores, marker='x', c='black', s=5, linewidth=.5) axs[0].fill_between(i[20:], *returnBars(scores, 20), color='r', alpha=.2) utils.setSize(axs[0], x=(0, None), y=(0.8, None)) utils.setAxes(axs[0], y='Metric') # Get twin axis to mark temperature in it ax2 = axs[0].twiny() ax2.set_xscale('log') ax2.set_xlabel('Temperature', fontsize=14) ax2.invert_xaxis() ax2.set_xlim((.25, 0.015129)) ax2.set_xticks([.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01]) ax2.set_xticklabels([str(i) for i in [.2, .1, .09, .08, .07, .06, .05, .04, .03, .02, .01]]) # Plot parameters one by one for j in range(0, len(paramss[0])): utils.setSize(axs[j+1], x=(0, len(log)), y=limits[j]) axs[j+1].set_ylabel(labels[j], fontsize=14) axs[j+1].set_yticks(ticks[j]) axs[j+1].set_yticklabels(ticklabels[j]) # Be careful plotting cyclic parameters derolled = deroll(paramss[:,j], limits[j], start=500) bar1, bar2 = returnBars(paramss[:,j], 20) for k in range(-3, 3): # # Plot the confidence intervals an data multiple times # to deal with cyclic parameters axs[j+1].scatter(i, derolled + k*(limits[j][1]-limits[j][0]), marker='x', c='black', s=5, linewidth=.5) axs[j+1].fill_between(i[20:], bar1 + k*(limits[j][1]-limits[j][0]), bar2 + k*(limits[j][1]-limits[j][0]), color='r', alpha=.2) f.align_ylabels(axs[:]) axs[-1].set_xlabel('Iteration', fontsize=14) plt.show()