
Tidal tails and bridges in galactic encounters

Candidate number: 6899V

Abstract: We develop a restricted n-body simulation to study tidal tail and bridge
formation in galactic encounters, providing a quantitative analysis of their development
and shape, as well as of the effects of varying the inclination of the encounter and the
strength of the perturbation. We further show that a full n-body simulation of rotationally
supported bulge : disk : dark matter halo galaxies leads to orbital decay and efficient
angular momentum transfer away from the luminous components. The resulting merger is
well-described as an elliptical galaxy approximated by a de Vaucouleur profile. Moreover,
we make use of a simulated annealing algorithm to construct a model for the Antennae
galaxies without human intervention and show that it matches its morphology and Doppler
shift observations from the Hydrogen 21-cm line.

[Word count: 3255]

Contents

1 Introduction 1

2 Parabolic encounters 2
2.1 Analysis & implementation 2
2.2 Prograde and retrograde encounters 3
2.3 A quantitative analysis 5
2.4 Extending the geometry 8

3 Dark matter halos 10
3.1 Computational performance 10
3.2 Orbital decay 11
3.3 Structure of a merger remnant 13

4 The Antennae galaxies 14
4.1 Analysis & implementation: Automated matching 14
4.2 Observations and the Hydrogen 21-cm line 16

5 Conclusions 19

A Source code listing 19

1 Introduction

The discovery of multiple anomalous pairs of galaxies in the 1950s, with regions protruding
into space (tails) and thin structures joining the pairs (bridges), lead to the suggestion
that tidal encounters could have played a role in their formation. After all, the Antennae,
the Mice, and many other pairs of such objects (figure 1) were often described so as to be
"in obvious interaction" [1]. While these processes are nowadays understood to drive star
formation [2, 3] and play a role in galactic evolution [4, 5], they were originally met with
skepticism, as it was thought that encounters were tremendously unlikely and that tides
could not produce such thin and elongated structures. In 1972, the pivotal work of Toomre
& Toomre [6] established, through restricted n-body numerical simulation, the feasibility
of tidal bridge and tail formation in close galactic encounters.

16 years later, Barnes advanced the field by considering the first self-consistent model
including a dark matter halo and displaying dynamical friction [7]. Further models included
star formation [8] and merged tree based codes [9] with Soft Particle Hydrodynamics (SPH)
[10, 11], rivalling the also common Adaptive Mesh Refinement (AMR) method.

Following [12], the current approaches can be divided into two. First, efforts at ex-
ploring the large parameter space to provide statistical interpretations, where the publicly

– 1 –

available GalMer dataset is the prime example [13]. Second, attempts at matching par-
ticular galaxies and observations [14, 15], such as star formation profiles [16] and cluster
evolution [17], with high complexity and resolution.

In this work, however, we first deliberately develop a restricted n-body simulation.
Hence we aim to show that bridges and tails are kinematic phenomena, that do not, for
instance, necessitate self-gravity to explain the thinness of their features. This is presented
in section 2. More advanced topics on dynamical friction in dark matter halos and re-
producing astronomical observations are presented later in sections 3 and 4 respectively.

Figure 1. A selection of interacting galaxies as captured by the Hubble telescope. From left to
right, The Tadpole (Arp 188), The Antennae (NGC 4038/4039) and The Mice (NGC 4676). We
refer to tails as the elongated regions protruding from galaxies into space (all cases) and to bridges as
the thin structures joining a pair of galaxies (right). Tails are commonly referred to as counterarms
when they are clearly bound to their progenitor; we do not make such blurred distinction here.

2 Parabolic encounters

2.1 Analysis & implementation

Qualitative understanding of the tidal structures can be obtained by considering a simpli-
fied model in which two heavy point masses, one of which is surrounded by massless test
particles constituting a galactic disk, interact gravitationally in a parabolic encounter of
pericenter distance rmin = 1.1 The inclusion of test particles surrounding the main mass
only is deliberate, as for massless particles a second ring can be directly superposed from a
complementary simulation where the main and companion masses have been interchanged.
In fact, neglecting self-gravity, an a priori radial density distribution for the ring is unnec-
essary, as its effect could be reproduced by reweighting the particles based on their initial
positioning once the simulation is complete. We thus place the test particles on discrete
rings that can be trivially followed independently. The choice of parabolic trajectories is
driven by two factors: (i) we expect encounters to be rare and not initially bound (e � 1).
(ii) when no dynamical friction is included, lasting features are more likely to occur for soft,
low eccentricity interactions.

1We choose units such that G = 1. One can choose to rescale all results to a typically-sized encounter,
based on the Antennae, by letting 10.4 kpc, 5⇥ 1011M� and 21.3 Gyr correspond to 1 unit of length, mass
and time respectively.

The code is presented in appendix A and documented thoroughly, but it is worth
highlighting that we make use of an Object Oriented approach and configuration files for
module reusing, save the progress of the simulation dynamically to avoid data loss, and
vectorize the operations for clarity and performance (section 3.1). This leads to trivial
generalization to more than two galaxies, different distributions and galactic objects, or
SPH.

Numerically, we employ a 4th order symplectic Verlet integrator and include “Plummer”
gravitational softening [18] with characteristic length scale ✏ = 0.1 to prevent numerical in-
stabilities and realistically account for the extended bulge. Employing massless rings further
reduces statistical fluctuations (relaxation effects).2 Since each test mass does not represent
a single star, the use of adaptative timesteps to model close interactions is unnecessary.

We perform four tests to validate the correctness and probe the numerical behaviour
of our approach:

i We verify that galaxies evolve unperturbed in isolation, with absolute variations in the
test particles’ orbital radii of < 10�3.

ii We confirm that pairs of masses follow the expected analytical orbits for no softening
to within < 10�3 for various eccentricities and mass ratios.

iii We study the deviation of test particles from their correct trajectories in a simple
encounter and select a conservative timestep dt = 10�3 for which the discrepancy is
4⇥ 10�3 length units on average within the timescale of interest (figure 2, left).

iv We ensure the energy of the system is conserved, to within 1% in the same encounter
(figure 2, right).

2.2 Prograde and retrograde encounters

We first present a prograde encounter (figure 3), where the spin of the disk and the orbital
angular momentum are aligned. A violent interaction is observed, leading to both a tail
and a bridge. For this equal mass encounter, only particles that are initially placed at a
radius of at least 0.4rmin contribute to the tidal structures, with more loosely bound rings
resulting in a larger tail. Equivalently, close encounters are necessary for significant tails
and bridges to form.

This prograde encounter suggests that tidal tails are the result of a broad resonance
between orbiting particles and the companion mass. This is more easily observed in figure
4 where the particles are coloured according to their final fate. As the companion mass
approaches the galaxy, the circularly symmetric disk elongates. At this point, the test
masses closer to the companion will form a bridge; those on the opposite side will result in
a tidal tail that can become several times larger than the original disk. It should be noted

2The mass of a galaxy is certainly not concentrated in its central bulge, but massless rings allow for an
efficient O(n) implementation in the number of test particles. Additionally, we stress once more that it will
allow us to show that tidal tails are a merely kinematic phenomenon.

– 3 –

Figure 2. Errors in the displacement of the test masses (left) and in the energy of the system
(right) for a prograde equal mass encounter (figure 3). The smoothed shaded regions contain 38%,
68% and 88% of the particles. For the chosen timestep dt = 10�3 test particles deviate from their
correct trajectory (taken as dt = 10�4) by 4⇥ 10�3 length units on average within the timescale of
interest, exceeding our plotting resolution. The energy is conserved to within ⇠ 1%.

Figure 3. A prograde flat parabolic encounter with a companion of equal mass. Coloured rings
originally placed at a radius .2, .3, .4, .5, .6, .7 and .8 from the main mass are shown at different
times, with opacity reflecting the local density of particles. The central cross indicates the position
of the center of mass and the stars that of the main and companion central masses. Only rings
placed at a radius of .4 (green) or higher lead to bridges and tails, with further rings resulting in
larger features.

that, whereas the tail is permanent in this encounter, the bridge is transient, with most
particles eventually falling back to the main mass or being trapped by the companion, and
few escaping from both masses. Of those particles that follow the perturbing mass, 94%
will remain bound to it (figure 5), albeit in highly elliptical orbits, in sharp contrast to the
largely unbound particles in the tail, which can span more than a 100 kpc in real galaxies.

To further support the resonance proposition, we show a similar interaction but where
the encounter is retrograde (figure 6). The rings are now mostly undisturbed, even at
large radii where for a real encounter the galactic rings themselves would have overlapped.
Although it is tempting to argue these features on the basis of the Lagrangian points of the

Figure 4. A prograde flat parabolic encounter with a companion of double the mass. A uniform
disk of size 0.6rmin surrounds the main mass and is coloured according to the eventual fate of each
particle: tail (orange), orbiting the main mass (green) or stolen by the companion (blue). Whereas
the bridge is transient and has negligible density at large times, the tail formed is permanent and
progressively grows to become several times larger than the original disk.

Figure 5. Eccentricity at large times for the encounter shown in figure 4 (prograde, parabolic,
mcompanion = 2⇥mmain). All of the particles that remain close to the main mass (green in figure 4)
and 98% of those that follow the companion (blue) are bound, although in highly eccentric orbits.
For the tail (orange), the opposite holds, with 94% of the particles having eccentricity e > 1 (85%
of those particles have e > 2 and are not shown).

system, we must note that tails also form in inclined encounters (see later in section 2.4),
and as such the resonance idea must be interpreted broadly.

2.3 A quantitative analysis

To perform a more quantitative analysis, it is necessary to design an accurate, automated
measurement scheme. We develop a sequential segmentation algorithm for this task, illus-

– 5 –

Figure 6. A retrograde flat parabolic encounter with a companion of equal mass. Coloured rings
originally placed at a radius .2, .3, .4, .5, .6, .7 and .8 from the main mass are shown at different
times. The rings remain mostly undisturbed, with no bridge or tail formation.

Figure 7. Depiction of the algorithm described in section 2.3. A limited number of concentric
spheres (shown as rings) are used here for illustration purposes only, anotated with their f value.
The stray particles from the bridge are emphasized in the middle picture and completely removed
by the algorithm.

trated in figure 7 and described here:

1. We divide the space with planes normal to the segment joining the massive centers,
at distances 30% and 70% along its length. The middle region is defined as the bridge
to within a width of 3 units and removed.

2. The remaining particles are classified as belonging to the main or companion mass
based on their relative distance to each. Those belonging to the main mass are divided

into 100 concentric spheres centered on the main mass, and the quantity f =
P

i ~riP
i |ri|

,
where ri denotes the radial vector of the ith particle is computed for each ring.

3. The start of the tail is associated with a sharp increase in f . We choose a cutoff at
f0 = 0.80, select the first ring with a value of f larger than f0 and remove all closer
rings. We also calculate the vector ~q =

P
i ~ri for the now innermost ring and remove

all particles in a direction opposite to ~q placed in the now innermost 5 rings, as these
are commonly stray particles from the bridge. The barycenters of the spherical shells
can now be joined to determine the shape and length of the tail.

The algorithm is satisfactorily checked to match human expectations for all the cases
presented in this report.3 We employ it to study the time evolution of prograde encounters,
based on the qualitative example in the preceding section, but where the companion mass
varies from that of the main mass (figure 8). It confirms that tidal bridges are transient
features whose life is however extended when the perturbing mass is small. Tidal tails, on
the contrary, are only significant when the companion is at least of similar mass, but can
then span vast lengths. It follows that when two tails are observed, as is the case for The
Antennae (figure 1, middle), both galaxies should have similar masses.

Figure 8. Evolution of the mass in the bridge (left) and the tail length (right) for a set of flat,
prograde, elliptic encounters of different main mass:companion mass ratios. A uniform disk of size
0.6rmin initially surrounded the main mass.

At large times, when the bridge has become negligible, we may assign each particle
to one of three groups: still orbiting the main galaxy, part of the tail, or stolen by the
companion. Figure 9 shows that the fractional mass belonging to each group is a strong
function of the perturbing mass to main mass ratio. When the companion is multiple times
more massive, the encounter is highly disruptive and a large fraction of the disk ends up
either stolen (> 30%) or forming the tail (> 40%).

Making use of the algorithm introduced, we can additionally analyse the shape of the
tail. To the surprise of the author, flat encounters display a universal tail shape, indepen-
dent of the mass of the companion, the time since pericenter and mostly the closeness of

3We have, in fact, already made use of it to colour the particles based on their final classification in
figure 4.

– 7 –

Figure 9. Fractional mass of the disk that, at large times, belongs to the tidal tail (solid) or has
been stolen by the companion (dashed) as a function of the companion mass. The remaining frac-
tional mass mostly continues closely orbiting the main mass. The main mass is initially surrounded
by a uniform disk of radius 0.7rmin.

Figure 10. Shape of the tail for flat prograde encounters with pericenter distance rmin = 1
differing on the mass of the companion (left), the time since pericenter (center) and the radius
of the ring (right). The radial distance is normalized by dividing by the radial extension of the
tail. The fact that the curves start at different radii is simply due to the difficulty of meaningfully
defining the tail close to the main mass.

the encounter (figure 10). Although this will not hold true for more general interacting
geometries, it makes it easier to guess appropriate viewing angles or initial conditions, since
tails such as those of the Mice galaxies are now known not to be flat but rather curved
away from the viewing plane.

2.4 Extending the geometry

It is clear that for a flat galactic encounter as presented so far both tails would be curved in
the same direction. Observations of for instance the Antennae, where this is not the case,
urge us to generalize the geometry of the event. This can be accomplished through the

Figure 11. The interacting geometry, reproduced from [6]. i denotes the angle between the
galactic and orbital planes; ! denotes the angle between the galactic plane and the pericenter, as
measured from the main mass.

Figure 12. Tail and bridge formation in parabolic encounters of equal mass with ! = 0� for
varying inclination angles i. Each event is plotted at t = 5 for a viewing direction along the
intersection of the orbital and galactic planes (top row) and normal to the galactic plane (bottom).
The 3rd event from the left is an example of a faux-bridge, as it can be seen to not be connected to
the companion in the top row but may appear to be in the bottom one.

introduction of two angles, the inclination i4 and the pericenter argument !, as illustrated
in figure 11. A survey of the inclination, restricted to parabolic encounters of equal mass
with ! = 0�, results in a curious phenomenon. Figure 12 shows that bridges only form for
low inclinations (i < 60�). Higher values lead to faux-bridges, as no mass is stolen and they

4
i = 0� corresponds to a flat prograde encounter; i = 180� to a flat retrograde encounter.

– 9 –

Figure 13. Performance comparison of the methods used to compute the gravitational forces in
double precision. A variable number of particles are placed randomly in a cubic box. We show
results for a single massive particle and massless test particles (left) and all massive particles (right).
"Brute-force Numba" denotes the same code used for the "Brute-Force" algorithm but having
compiled it using Numba whereas "Brute-force Numba opt." denotes an optimized version devised
for low-level performance, similar in style to "Brute Force C++". The Barnes-Hut approximation
agrees to within 1% with the exact methods for the shown ✓max = 0.7. All measurements were
made in a single thread of a 2.7 GHz Intel Core i5 and have statistical uncertainties comparable
to the marker size.

are not connected to the companion but may appear to be from certain viewing angles.
Tails can on the other hand be formed for high inclination, with the main difference being
that they appear less curved when the galaxy is viewed normal to the spin plane.5

3 Dark matter halos

3.1 Computational performance

Although a dark matter halo can be introduced by considering extended matter distribu-
tions, as opposed to central point masses, to consider halo-halo interactions and include
orbital decay through dynamical friction a full n-body simulation is required. One may
consider a brute-force pairwise summation algorithm, but it is clear that its O(n2) com-
plexity on the number of massive particles makes it a suboptimal choice. To that end, we
implement a Barnes-Hut tree that provides an approximation to the gravitational forces
with complexity O(n log n). Due to the vast overhead of object creation in Python, we
implement the tree in C++, compile it to a shared library, and use the standard library
module ctypes to call the functions from Python. For a fair comparison, we also provide
a version of the pairwise summation algorithm written in C++ and one written in Python
but compiled to low-level instructions using Numba.6 Figure 13 shows the expected results,

5One could at this point include a survey of !. We do not find it worthwhile as the resulting tails all
look far too similar —the interested reader is referred to [6]— and we would perhaps only highlight that
tidal structure formation is inhibited as ! moves away from 0� for high inclinations (i > 60�). At this point
this is more of a blessing, as one can then conceptually superpose two encounters to match astronomical
observations by modifying the value of !, without worrying too much about drastically affecting the tails.

6Numba is a Python library which "translates Python functions to optimized machine code at runtime".

mass ratios eccentricity no. of particles
bulge : disk : halo e bulge : disk : halo

A 1 : 1 : 0 0.5 500 : 500 : 0
B 1 : 3 : 16 0.5 500 : 500 : 0
C 1 : 1 : 0 1.0 500 : 500 : 2000
D 1 : 3 : 16 1.0 500 : 500 : 2000

Table 1. Parameters for the 4 encounters considered in section 3. The total mass of each galaxy
and distance of closest approach are kept constant at rmin = 1 and M = 1. The interaction geometry
is loosely inspired by the Antennae, following [7], with i1 = i2 = 60� and !1 = !2 = 30�.

with the Barnes-Hut algorithm outperforming all other approaches when more than 400
massive particles are used. It is clear that interfacing with C++ results in an overhead but
we expect this to be O(n), as this is the size of the exchanged arrays. For massless test
particles, the use of code optimized for Numba (O(n)) leads to the fastest performance due
to no interfacing costs.

For a sensible 10 ms computing time step, 104 massive or 106 massless bodies may
be used.7 The implementation is optimized for memory reusing, loop unrolling and cache
hit minimization but further improvements could straightforwardly be achieved through
concurrency and Single Instruction Multiple Data (SIMD) techniques or more laboriously
by exploiting the GPU.8 We note that we have implemented basic unit testing for these
routines and are thus confident that they are in agreement.

3.2 Orbital decay

Following [7], we use prototype bulge:disk:dark halo cold (rotationally supported) galaxies.9

The bulge is constructed using a Plummer distribution of characteristic length 0.04, the
disk using an exponential distribution of decay length 0.2, and the dark matter halo using
a NFW profile with Rs = 1 and cut-off at R0 = 5. We simulate 4 different encounters,
summarized in table 1, elliptical (e = 0.5) and parabolic, both with halo and no halo.

Figure 14 shows the trajectory followed by the bulge in all four encounters. A full n-
body simulation results in orbital decay in all cases. In fact, dynamical friction is so efficient
that even hyperbolic trajectories can decay in a few crossings. It must be noted as such
that, whereas a dark halo is not necessary to observe dynamical friction, when included
orbital decay may occur even at large separations, greatly enhancing the probability of
interactions in the Universe and the importance of galactic mergers.

7Scaling to the ⇠ 1011 stars in the Milky Way is unreasonable, as a more accurate SPH simulation would
be preferred over mindless scaling. In any case, we note that locally adaptative timestep algorithms would
then allow to model close star interactions without significant performance drawbacks.

8This, or alternatively the use of BLAS, would also allow one to compute only the upper-half of the skew-
hermitian matrices involved. Numpy does not provide specific routines for hermitian and skew-hermitian
matrices leading to either wasteful computation or cumbersome code.

9We do not evolve the galaxies in isolation and construct them so as to be formally in equilibrium,
as opposed to adiabatically. Softening of the gravitational potential is thus needed to minimize two-body
relaxation effects.

– 11 –

Figure 14. Trajectories of the central bulge for the full n-body simulation. Encounters from left
to right: elliptical with no halo (A), elliptical with halo (B), parabolic with no halo (C), parabolic
with halo (D). Efficient dynamical friction is observed in all examples. Solid lines represent the
bulge trajectories and dashed lines the Keplerian trajectories that would be observed for point
galaxies. The view is normal to the orbital plane.

Figure 15. Elliptical encounters with bulge:disk:halo mass ratios 1:1:0 (top, A) and 1:3:16 (bottom,
B). We show snapshots of the luminous components slightly after the first pericenter (left), slightly
before the second pericenter (center) and at large times when the galaxies have merged (right). A
full n-body simulation results in the expected orbital decay. A dark halo leads to thinner tails and
a more compact merger remnant. The view is normal to the orbital plane.

Figure 16. Evolution of the angular momentum of the luminous component for hyperbolic
encounters with no dark matter halo (dashed, C) and with a dark matter halo (solid, D). The angular
momentum in encounter C is conserved to within relative numerical error of 10�10 (providing a
further test of the numerical implementation), whereas in D 60% of the angular momentum of the
luminous components is transferred away. The exact pairwise summation method is employed for
accuracy.

When all luminous components are plotted (figure 15), the halo results in thinner
tails, consistent with many observed systems, and a more compact merger remnant. The
explanation is straightforward: it provides a mechanism for angular momentum in the disk
and bulge to be transferred away. This is confirmed by encounter D (figure 16), where the
merger only possesses 40% of the initial angular momentum in the luminous components.

3.3 Structure of a merger remnant

The idea that that two spiral galaxies can merge to create an elliptical galaxy was established
as reasonable by Toomre in subsequent work (see the "Toomre sequence" [4]) and first
studied closely in the context of dark halos by Barnes [7] (see [12] for a review). Numerically,
the study is simple, as one only needs to allow our previous encounter D, the most physically
plausible of them all, to evolve until dynamical equilibrium is reached.

The merger is consistent with the properties of a typical elliptical galaxy with principal
axes in the ratio 7 : 10 : 13. One observes in figure 17 that the resulting galaxy has a
size only slightly larger than its progenitors, as has been noted before. More interestingly,
the resulting merger is well described by de Vaucouleurs’ law, a commonly used model
parameterising the surface brightness I as a function of the distance to the center of the
galaxy R as log(I) = log(I0)� kr1/4, where I0 and k are constants. This provides evidence
for the now accepted theory that elliptical galaxies may originate from the merging of other
galaxies. Based on this idea, CDM models propose the hierarchical scenario, where many
large scale structures in the Universe can be explained through successive gravitational

– 13 –

Figure 17. Cumulative mass distribution of the resultant merger for encounter D (left) and
magnitude M = log(surface density) (in arbitrary units) as a function of r1/4 (right). The surface
density is well-described by de Vaucouleurs’ law, as has been reported multiple times ([7] and
references therein). The 5 closest and 2 furthest points for each series are omitted in the fit, as
they are highly dependent on the original bulge distribution and suffer from high uncertainty in the
determination of the radii.

collapse due to instabilities and galactic mergers.

4 The Antennae galaxies

4.1 Analysis & implementation: Automated matching

The Antennae galaxies are one of the best studied mergers due to their proximity [19, 20],
allowing for the result of the simulations to be compared to data in great detail. Owing to
this, and further motivated by their beauty, we aim in this section to explain how the pair
could have arisen. Our target is to find a set of parameters consistent with the observations
through an algorithm that scans the parameter space without any human intervention.
This is an area of active research (Identikit [21, 22], AGC [23]) where simplified simulations
are used and humans still commonly carry out part of the process manually [24]. In the
case of the Antennae, the state of the art simulations are to this day largely based on the
parameters proposed by Toomre & Toomre [14].

We experiment with Bayesian optimization and genetic algorithms, but find them to
suffer from boundary issues10 and unnecessary hyperparameter complexity for the problem.
We settle for Simulated Annealing due to its ability to handle a relatively large number of
parameters (table 2) and to converge without too many evaluations.

In detail, we select a sensible range for each allowed parameter and draw the first sam-
ple at random.11 We choose an exponential cooling scheme for the temperature and in every

10The algorithm repeatedly evaluates (less likely optimal) points near the boundaries, particularly when
Upper Confidence Boundary acquisition functions are employed. For a large number of parameters this is
computationally wasteful and whereas proposed solutions exist [25] this would take us too far into the field
of black-box optimization.

11To lower the number of parameters and ensure performance, we make use of the simplified model from
section 2, with massless test particles in a uniform ring, deemed appropriate for obtaining a plausible set
of geometrical parameters.

Figure 18. Evolution of the simulated annealing algorithm. Each dot shows a single evaluation,
with the performance metric shown in the first row (higher is better) and the initializing parameters
in all the following. The shaded regions indicate the 10%�90% confidence bands. Note that there is
a significant error (⇠ ±0.04) in each metric evaluation, since it involves probing multiple displaying
parameters stochastically. The algorithm is seen to converge to a set of parameters, with a generally
upwards trend for the metric, providing evidence for its correctness.

iteration perturb each parameter of the current best result by adding numbers drawn from
a Gaussian distribution with standard deviation linearly proportional to the temperature.
The score for each evaluation is the F1 score between two low resolution binarized images:
the ground truth derived from astronomical observations and a 2D projection of the simula-
tion.12 The choice is driven by the necessity for an extremely fast performance evaluation,
as each simulation must be compared to the ground truth at multiple time instants (t),
viewing directions (✓,�), possible rotations along the line of sight (⌦), scalings (s) and

12The F1 score is the harmonic average of the sensitivity and recall and matched human expectations of
what constituted a good match. We segment the ground truth into two galaxies, match them separately
and add the two scores.

– 15 –

Parameter Allowed range Final value
Mass ratioa 1.0 1.0
Eccentricity 0.5 - 1.0 0.5
1st galaxy:

Inclination (i1) 0 - ⇡ 26.3�

Pericenter arg. (!1) �⇡ - ⇡ �153.0�

Disk radius (R1) 0.55 - 0.8 0.65
2nd

galaxy:

Inclination (i2) 0 - ⇡ 76.8�

Pericenter arg. (!2) �⇡ - ⇡ 147.3�

Disk radius (R2) 0.55 - 0.8 0.70 (0.64)
Viewing:

✓ 0 - ⇡ (1.86)
� 0 - 2⇡ (4.10)
⌦ 0 - 2⇡ (5.10)

Scalingb - (12.0 kpc)
(x, y)c offset - -

HI spectrum:

Velocity offset - (43 km/s)
Velocity scalingc - (150 km/s)

Table 2. Parameters matched by the simulated annealing algorithm. The velocity offset and
velocity scaling are not matched by the algorithm but introduced here for later use. We show
in parenthesis those parameters which we modify or select manually. aWe set the ratio of their
masses to 1 as astronomical observations and previous work suggest this is reasonable [14]. bOne
dimensionless unit in the simulation corresponds in this case to the distance and velocity given
in the table for the assumed 22 Mpc distance to the Antennae with total mass for each galaxy
5⇥ 1011M�, following [14]. cThe offset is physically meaningless here as it depends on the framing
of the ground truth image, but must nevertheless be matched.

translations (x, y) to obtain the best match. In fact, despite each single image comparison
being optimized to take 20µs, the simulation itself only amounts to ⇠ 10% of the computing
cost.13 The correctness of the algorithm is examined by globally optimizing several single-
and multi-dimensional analytical functions with additive Gaussian distributed noise.

4.2 Observations and the Hydrogen 21-cm line

Figure 18 shows the results of running the simulated annealing algorithm for 1400 samples
(⇠ 2 days of computing time). The final parameters are those of the best run and are
tabulated in table 2. The low eccentricity may be particularly worrying as a low period
elliptical orbit could hardly have been the case. In reality, having neglected orbital decay, it

13Among the other explored metrics, we highlight the Wasserstein distance, obtained by solving an
optimal transport problem, which matched human expectations better and can be made translationally
invariant but is too computationally expensive to evaluate.

was expected that a closer despite unphysical match would result from elliptical encounters.
It is due to this same omission of a dark matter halo that many previous approaches ran
simulations with e = 0.5 [6]. The final model, which qualitatively matches the Antennae
except for a small number of stray particles next to one of the disks is shown in figure
19. The parameters found agree only partially with those provided originally by Toomre
and Toomre [6]. When taken to follow their convention,14 our parameters read i1 = 26.3�,
i2 = 76.8�, !1 = 27.0�, !2 = �32.7� compared to theirs i1 = i2 = 60�, !1 = !2 = �30�.
We believe this is due to the problem being under-constrained with only one observation
viewpoint.

Figure 19. Comparison between observations of the Antennae galaxies obtained from [20] (left),
from which the low resolution binarised ground truth is obtained, and the result of our best simu-
lation at time t=13.5 (right). 20,000 test masses are included per galaxy for plotting purposes with
brightness indicating the density of each region. The observations combine HI data (green) with
optical images (white and blue).

Moreover, we compare our model to HI observations and find a surprisingly good agree-
ment (figure 20), including the "twists" at the tail ends.15 We emphasize here that our sim-
ulated annealing algorithm did not attempt to match the line of sight velocity observations
in any way, and as such this independent test gives us confidence in our model. Even more
surprisingly, the match is similar to that of recent SPH models (including radiative cooling,
star formation and feedback from Type II supernovae) [14]. It would be unfair to put these
two models at the same level, as the main reason for the "extra machinery" is to probe
bursts of star formation in the overlapping region,16 but it is certainly now reasonable to
say that Toomre & Toomre [6] couldn’t have been more right when they wrote that "[these
structures are] in essence kinematic".

14Toomre and Toomre allow i to take negative values but restrict ! to be |!| < 90�.
15We expect that a closer reproduction of the features of the tails would require a more realistic model of

the galaxies (bulge + disk + halo, see section 3), but the number of parameters would become intractable.
16The Antennae are currently undergoing a starburst phase in the overlap region, a feature that has proven

hard to replicate, as many simulations predict enhanced star formation at the galactic centers instead [26].
It has been suggested that collisions of Giant Molecular Clouds could account for this feature [26, 27].

– 17 –

Figure 20. Comparison to HI kinematic data from [20]. Yellow points represent the observational
data, blue and red the model. We show the results from Karl et al., 2010 [14] (top left, Soft Particle
Hydrodynamics + Star formation + Radiative cooling + Type II Supernovae feedback) and of our
best model (bottom right). The velocity offset and scaling were matched manually. The initial
radius of the second galaxy was modified slightly (table 2).

[2993 words to this mark]

5 Conclusions

We have shown that a simplified model where two galaxies, surrounded by massless rings
of particles, interact is sufficient to reproduce many of the phenomena associated with
these encounters, emphasizing that bridges, tails and counterarms are at heart a kinematic
phenomenon. Bridges are found to be transient and a feature of soft perturbations whereas
tails require the perturbing galaxy to be of similar size. Both are however dependent on spin-
orbit coupling, i.e. the alignment of the spin of the galaxy with the angular momentum of the
orbit, as bridges, and to a lesser extent tails, are inhibited by high inclination encounters.

We also consider self-gravitating rotationally supported models and find them to exhibit
dynamical friction. A dark matter halo provides an efficient mechanism for orbital decay
and for angular momentum to be transferred away from the luminous components, leading
to elliptical merger remnants that follow de Vaucouleur’s law. Finally, we provide a simple
model for the Antennae galaxies obtained by sampling the high dimensional space without
human intervention, comparable to current semi-supervised and unsupervised approaches
([21–23]). The obtained model matches observational data of the HI spectroscopic line to
great accuracy. The main open area remains a study of star formation, which would require
a SPH simulation.

In any case, the idea that galactic interactions account for the morphology of some
peculiar galaxies is well established. More interesting open topics include whether cosmo-
logical simulations based on Cold Dark Matter models (⇤CDM) can lead to a structured
formation of the universe through galactic mergers, and the study of dwarf galaxy formation
in the tidal tails [28].

A Source code listing

Legible documentation, automatically generated using pdoc from the docstrings, can be
found in the docs/ folder. We structure the code in an Object Oriented manner, to allow
for our modules to be reused, and follow appropriate style conventions. The simplest way
to run an encounter is through the command line:

> python run_simulation.py config.yml --output_folder --verbose

We make use of configuration files in YAML (.yml) format. These are extremely simple
and concise, as one only needs to specify those parameters that differ from the default
(config/default.yml). For example, the encounter proposed for the Antennae in [6] can
be specified as:

– 19 –

1 name: toomre1972
2 galaxy1:
3 orientation: [240, -30]
4 disk:
5 l: .7
6 galaxy2:
7 orientation: [120, -30]
8 disk:
9 particles: 2000

10 l: .7

A .yml can contain multiple encounters separated with three dashes (as per usual
YAML standard). In this case the extra encounters need only specify those parameters
that change with respect to the first encounter, making parameter surveys simple. .yml
files for the encounters we consider can be found in the config/ folder. The core of the
simulation (Simulation, Galaxy) can be found in the file simulation.py, and makes use
of the routines defined in acceleration.py. The gravitational computation routines are
general —allowing some particles to be set as massless— and have been optimized to take
advantage of compiler loop unrolling and vectorization as well as to minimize cache hits
and memory allocations for performance.

The C++ library can be found in the cpp/ folder and the simulated annealing algorithm
is contained in run_simulated_annealing.py. Moreover, the submission includes an inter-
active widget (analysis/interactive.ipynb) that can be used to examine the encounters.
Its interface is shown in figure 21.

Figure 21. Interface of the interactive widget analysis/interactive.ipynb that can be used
to analyse the encounters. It allows the time and viewing direction to be varied. For massless
particles in rings, the radii of the galaxies can also be modified without rerunning the simulation.
Observational data of the Antenna Hydrogen 21-cm line can be matched using this tool.

Due to their obvious length we do not reproduce here helper functions (utils.py),
statistical distributions (distributions.py) and analysis and plotting code (analysis/),

except for the segmentation algorithm (segmentation.py) described in section 2.3. These
can be found in the online submission and should be ran from the main module, that is for
instance:

> python -m analysis.tailShapePlot

– 21 –

Configuration and running encounters

config/default.yml

1 ---
2 # When calling > python simulation.py filename.yml --output_folder
3 # the simulation will use the default parameters here unless specified
4 name: default
5

6 simulation:
7 dt: 0.001 #timestep of the simulation
8 tmax: 15 #total runtime of the simulation
9 soft: 0.1 #plummer softening characteristic length

10 saveEvery: 100 #the state of the simulation is saved every saveEvery steps
11 method: bruteForce #method for computing gravitational forces
12 # One of 'bruteForce', 'bruteForceNumba',
13 # bruteForceNumbaOptimized', 'bruteForceCPP', 'barnesHutCPP'.
14

15 orbit:
16 e: 1 #eccentricity
17 rmin: 1 #separation at pericenter
18 R0: 4 #separation at t=0
19

20 galaxy1:
21 orientation: [0, 0] #[theta, phi] in degrees
22 # These are related to i, ! through theta = i + 180 and ! = phi
23 centralMass: 1 #mass of the central point object
24 bulge:
25 model: plummer #alternatively: hernquist
26 totalMass: 0
27 particles: 0 #number of particles
28 l: .04 #characteristic length scale both for plummer and Hernquist models
29 disk:
30 model: uniform #alternatively: rings, exp
31 totalMass: 0
32 particles: 2000 #number of particles
33 l: 0.8 #for uniform: single number for maximum radius
34 #l: [0., .7, 100] #for rings: [closest ring, furthest ring, number of rings]
35 #l: .2 #for exp: characteristic decay length
36 halo:
37 model: NFW #Navarro-Frenk-White profile only
38 totalMass: 0
39 particles: 0 #number of particles
40 rs: 1 #characteristic length scale of NFW. Cutoff is 5*rs
41

42 # The same options are available for the second galaxy
43 galaxy2:
44 orientation: [0, 0]

45 centralMass: 1
46 bulge:
47 model: plummer
48 totalMass: 0
49 particles: 0
50 l: .04
51 disk:
52 model: uniform
53 totalMass: 0
54 particles: 0 #the second galaxy does not possess a ring by default
55 l: 0.7
56 halo:
57 model: NFW
58 totalMass: 0
59 particles: 0
60 rs: 1

run_simulation.py

1 """Command line tool to run a YAML simulation configuration file."""
2

3 import yaml
4 import argparse
5

6 from utils import update_config
7 from simulation import Simulation, Galaxy
8

9

10 # Parse command line arguments:
11 # > python simulation.py config_file.yml output_folder
12 parser = argparse.ArgumentParser(description='''Run a galactic
13 collision simulation.''')
14 parser.add_argument('config_file', type=argparse.FileType('r'),
15 help='''Path to configuration file for the simulation, in YAML format.
16 See the config folder for examples.''')
17 parser.add_argument('--output_folder', default=None,
18 help='''Name of the output folder in data/ where the results will be
19 saved. The directory will be created if necessary. If none is provided,
20 the name attribute in the configuration file will be used instead.''')
21 parser.add_argument('--verbose', action='store_true', default=False,
22 help='''In verbose mode the simulation will print its progress.''')
23

24 args = parser.parse_args()
25

26 # Load the configuration for this simulation
27 CONFIG = yaml.load(open("config/default.yml", "r")) # default configuration
28 updates = list(yaml.load_all(args.config_file))
29

30 for update in updates:

– 23 –

31 # For multiple configurations in one file,
32 # the updates are with respect to the first one.
33 update_config(CONFIG, updates[0])
34 update_config(CONFIG, update)
35 # If no output folder is provided, the name in CONFIG is used instead
36 outputFolder = (CONFIG['name'] if args.output_folder is None
37 else args.output_folder)
38

39 # Run the simulation
40 sim = Simulation(**CONFIG['simulation'], verbose=args.verbose,
41 CONFIG=CONFIG)
42 galaxy1 = Galaxy(**CONFIG['galaxy1'], sim=sim) # create the galaxies
43 galaxy2 = Galaxy(**CONFIG['galaxy2'], sim=sim)
44 sim.setOrbit(galaxy1, galaxy2, **CONFIG['orbit']) # define the orbit
45 sim.run(**CONFIG['simulation'], outputFolder=outputFolder)

Numerical components

acceleration.py

1 """Defines the possible routines for computing the gravitational forces in the
2 simulation.
3

4 All the methods in this file require a position (n, 3) vector, a mass (n,)
5 vector and an optional softening scale float."""
6

7 import ctypes
8 import numpy.ctypeslib as ctl
9 import numpy as np

10 from numba import jit
11

12

13 def bruteForce(r_vec, mass, soft=0.):
14 """Calculates the acceleration generated by a set of masses on themselves.
15 Complexity O(n*m) where n is the total number of masses and m is the
16 number of massive particles.
17

18 Parameters:
19 r_vec (array): list of particles positions.
20 Shape (n, 3) where n is the number of particles
21 mass (array): list of particles masses.
22 Shape (n,)
23 soft (float): characteristic plummer softening length scale
24 Returns:
25 forces (array): list of forces acting on each particle.
26 Shape (n, 3)
27 """
28 # Only calculate forces from massive particles

29 mask = mass!=0
30 massMassive = mass[mask]
31 rMassive_vec = r_vec[mask]
32 # x m x 1 matrix (m = number of massive particles) for broadcasting
33 mass_mat = massMassive.reshape(1, -1, 1)
34 # Calculate displacements
35 # r_ten is the direction of the pairwise displacements. Shape (n, m, 3)
36 # r_mat is the absolute distance of the pairwise displacements. (n, m, 1)
37 r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
38 r_mat = np.linalg.norm(r_ten, axis=-1, keepdims=True)
39 # Avoid division by zeros
40 # a = M/(r + ✏)2, where ✏ is the softening scale
41 # r_ten/r_mat gives the direction unit vector
42 accel = np.divide(r_ten * mass_mat/(r_mat+soft)**2, r_mat,
43 where=r_ten.astype(bool), out=r_ten) # Reuse memory from r_ten
44 return accel.sum(axis=1) # Add all forces on each particle
45

46 @jit(nopython=True) # Numba annotation
47 def bruteForceNumba(r_vec, mass, soft=0.):
48 """Calculates the acceleration generated by a set of masses on themselves.
49 It is done in the same way as in bruteForce, but this
50 method is ran through Numba"""
51 mask = mass!=0
52 massMassive = mass[mask]
53 rMassive_vec = r_vec[mask]
54 mass_mat = massMassive.reshape(1, -1, 1)
55 r_ten = rMassive_vec.reshape(1, -1, 3) - r_vec.reshape(-1, 1, 3)
56 # Avoid np.linalg.norm to allow Numba optimizations
57 r_mat = np.sqrt(r_ten[:,:,0:1]**2 + r_ten[:,:,1:2]**2 + r_ten[:,:,2:3]**2)
58 r_mat = np.where(r_mat == 0, np.ones_like(r_mat), r_mat)
59 accel = r_ten/r_mat * mass_mat/(r_mat+soft)**2
60 return accel.sum(axis=1) # Add all forces in each particle
61

62 @jit(nopython=True) # Numba annotation
63 def bruteForceNumbaOptimized(r_vec, mass, soft=0.):
64 """Calculates the acceleration generated by a set of masses on themselves.
65 This is optimized for high performance with Numba. All massive particles
66 must appear first."""
67 accel = np.zeros_like(r_vec)
68 # Use superposition to add all the contributions
69 n = r_vec.shape[0] # Number of particles
70 delta = np.zeros((3,)) # Only allocate this once
71 for i in range(n):
72 # Only consider pairs with at least one massive particle i
73 if mass[i] == 0: break
74 for j in range(i+1, n):
75 # Explicitely separate components for high performance
76 # i.e. do not do delta = r_vec[j] - r_vec[i]

– 25 –

77 # (The effect of this is VERY relevant (x10) and has to do with
78 # memory reallocation) Numba will vectorize the loops.
79 for k in range(3): delta[k] = r_vec[j,k] - r_vec[i,k]
80 r = np.sqrt(delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2])
81 tripler = (r+soft)**2 * r
82

83 # Compute acceleration on first particle
84 mr3inv = mass[i]/(tripler)
85 # Again, do NOT do accel[j] -= mr3inv * delta
86 for k in range(3): accel[j,k] -= mr3inv * delta[k]
87

88 # Compute acceleration on second particle
89 # For pairs with one massless particle, no reaction force
90 if mass[j] == 0: break
91 # Otherwise, opposite direction (+)
92 mr3inv = mass[j]/(tripler)
93 for k in range(3): accel[i,k] += mr3inv * delta[k]
94 return accel
95

96 # C++ interface, load library
97 ACCLIB = None
98 def loadCPPLib():
99 """Loads the C++ shared library to the global variable ACCLIB. Must be

100 called before using the library."""
101 global ACCLIB
102 ACCLIB = ctypes.CDLL('cpp/acclib.so')
103 # Define appropiate types for library functions
104 doublepp = np.ctypeslib.ndpointer(dtype=np.uintp) # double**
105 doublep = ctl.ndpointer(np.float64, flags='aligned, c_contiguous')#double*
106 # Check cpp/acclib.cpp for function signatures
107 ACCLIB.bruteForceCPP.argtypes = [doublepp, doublep,
108 ctypes.c_int, ctypes.c_double]
109 ACCLIB.barnesHutCPP.argtypes = [doublepp, doublep,
110 ctypes.c_int, ctypes.c_double, ctypes.c_double,
111 ctypes.c_double, ctypes.c_double, ctypes.c_double]
112

113 def bruteForceCPP(r_vec, m_vec, soft=0.):
114 """Calculates the acceleration generated by a set of masses on themselves.
115 This is ran in a shared C++ library through Brute Force (pairwise sums)
116 Massive particles must appear first."""
117 # Convert array to data required by C++ library
118 if ACCLIB is None: loadCPPLib() # Singleton pattern
119 # Change type to be appropiate for calling library
120 r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
121 * r_vec.strides[0]).astype(np.uintp)
122 # Set return type as double*
123 ACCLIB.bruteForceCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
124 shape=(r_vec.shape[0]*3,))

125 # Call the C++ function: double* bruteForceCPP
126 accel = ACCLIB.bruteForceCPP(r_vec_c, m_vec, r_vec.shape[0], soft)
127 # Change shape to get the expected Numpy array (n, 3)
128 accel.shape = (-1, 3)
129 return accel
130

131 def barnesHutCPP(r_vec, m_vec, soft=0.):
132 """Calculates the acceleration generated by a set of masses on themselves.
133 This is ran in a shared C++ library using a BarnesHut tree"""
134 # Convert array to data required by C++ library
135 if ACCLIB is None: loadCPPLib() # Singleton pattern
136 # Change type to be appropiate for calling library
137 r_vec_c = (r_vec.ctypes.data + np.arange(r_vec.shape[0])
138 * r_vec.strides[0]).astype(np.uintp)
139 # Set return type as double*
140 ACCLIB.barnesHutCPP.restype = np.ctypeslib.ndpointer(dtype=np.float64,
141 shape=(r_vec.shape[0]*3,))
142 # Explicitely pass the corner and size of the box for the top node
143 px, py, pz = np.min(r_vec, axis=0)
144 size = np.max(np.max(r_vec, axis=0) - np.min(r_vec, axis=0))
145 # Call the C++ function: double* barnesHutCPP
146 accel = ACCLIB.barnesHutCPP(r_vec_c, m_vec, r_vec.shape[0],
147 size, px, py, pz, soft)
148 # Change shape to get the expected Numpy array (n, 3)
149 accel.shape = (-1, 3)
150 return accel

simulation.py

1 """Definition of the Simulation class and the Galaxy constructor."""
2

3 import os
4 import pickle
5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 from utils import random_unit_vectors, cascade_round
9 from distributions import PLUMMER, HERNQUIST, UNIFORM, EXP, NFW

10 import acceleration
11

12

13 ##
14 ##
15 class Simulation:
16 """"Main class for the gravitational simulation.
17

18 Attributes:
19 r_vec (array): position of the particles in the current timestep.
20 Shape: (number of particles, 3)

– 27 –

21 rprev_vec (array): position of the particles in the previous timestep.
22 Shape: (number of particles, 3)
23 v_vec (array): velocity in the current timestep.
24 Shape: (number of particles, 3)
25 a_vec (array): acceleration in the current timestep.
26 Shape: (number of particles, 3)
27 mass (array): mass of each particle in the simulation.
28 Shape: (number of particles,)
29 type (array): non-unique identifier for each particle.
30 Shape: (number of particles,)
31 tracks (array): list of positions through the simulation for central
32 masses. Shape: (tracked particles, n+1, 3).
33 CONFIG (array): configuration used to create the simulation.
34 It will be saved along the state of the simulation.
35

36 dt (float): timestep of the simulation
37 n (int): current timestep. Initialized as n=0.
38 soft (float): softening length used by the simulation.
39 verbose (boolean): When True progress statements will be printed.
40 """
41

42 def __init__(self, dt, soft, verbose, CONFIG, method, **kwargs):
43 """Constructor for the Simulation class.
44

45 Arguments:
46 dt (float): timestep of the simulation
47 n (int): current timestep. Initialized as n=0.
48 soft (float): softening length used by the simulation.
49 verbose (bool): When True progress statements will be printed.
50 CONFIG (dict): configuration file used to create the simulation.
51 method (string): Optional. Algorithm to use when computing the
52 gravitational forces. One of 'bruteForce', 'bruteForce_numba',
53 'bruteForce_numbaopt', 'bruteForce_CPP', 'barnesHut_CPP'.
54 """
55 self.n = 0
56 self.t = 0
57 self.dt = dt
58 self.soft = soft
59 self.verbose = verbose
60 self.CONFIG = CONFIG
61 # Initialize empty arrays for all necessary properties
62 self.r_vec = np.empty((0, 3))
63 self.v_vec = np.empty((0, 3))
64 self.a_vec = np.empty((0, 3))
65 self.mass = np.empty((0,))
66 self.type = np.empty((0, 2))
67 algorithms = {
68 'bruteForce': acceleration.bruteForce,

69 'bruteForceNumba': acceleration.bruteForceNumba,
70 'bruteForceNumbaOptimized': acceleration.bruteForceNumbaOptimized,
71 'bruteForceCPP': acceleration.bruteForceCPP,
72 'barnesHutCPP': acceleration.barnesHutCPP
73 }
74 try:
75 self.acceleration = algorithms[method]
76 except: raise Exception("Method '{}' unknown".format(method))
77

78 def add(self, body):
79 """Add a body to the simulation. It must expose the public attributes
80 body.r_vec, body.v_vec, body.a_vec, body.type, body.mass.
81

82 Arguments:
83 body: Object to be added to the simulation (e.g. a Galaxy object)
84 """
85 # Extend all relevant attributes by concatenating the body
86 for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:
87 simattr, bodyattr = getattr(self, name), getattr(body, name)
88 setattr(self, name, np.concatenate([simattr, bodyattr], axis=0))
89 # Order based on mass
90 order = np.argsort(-self.mass)
91 for name in ['r_vec', 'v_vec', 'a_vec', 'type', 'mass']:
92 setattr(self, name, getattr(self, name)[order])
93

94 # Update the list of objects to keep track of
95 self.tracks = np.empty((np.sum(self.type[:,0]=='center'), 0, 3))
96

97 def step(self):
98 """Perform a single step of the simulation.
99 Makes use of a 4th order Verlet integrator.

100 """
101 # Calculate the acceleration
102 self.a_vec = self.acceleration(self.r_vec, self.mass, soft=self.soft)
103 # Update the state using the Verlet algorithm
104 # (A custom algorithm is written mainly for learning purposes)
105 self.r_vec, self.rprev_vec = (2*self.r_vec - self.rprev_vec
106 + self.a_vec * self.dt**2, self.r_vec)
107 self.n += 1
108 # Update tracks
109 self.tracks = np.concatenate([self.tracks,
110 self.r_vec[self.type[:,0]=='center'][:,np.newaxis]], axis=1)
111

112 def run(self, tmax, saveEvery, outputFolder, **kwargs):
113 """Run the galactic simulation.
114

115 Attributes:
116 tmax (float): Time to which the simulation will run to.

– 29 –

117 This is measured here since the start of the simulation,
118 not since pericenter.
119 saveEvery (int): The state is saved every saveEvery steps.
120 outputFolder (string): It will be saved to /data/outputFolder/
121 """
122 # When the simulation starts, intialize self.rprev_vec
123 self.rprev_vec = self.r_vec - self.v_vec * self.dt
124 if self.verbose: print('Simulation starting. Bon voyage!')
125 while(self.t < tmax):
126 self.step()
127 if(self.n % saveEvery == 0):
128 self.save('data/{}'.format(outputFolder))
129

130 print('Simulation complete.')
131

132 def save(self, outputFolder):
133 """Save the state of the simulation to the outputFolder.
134 Two files are saved:
135 sim{self.n}.pickle: serializing the state.
136 sim{self.n}.png: a simplified 2D plot of x, y.
137 """
138 # Create the output folder if it doesn't exist
139 if not os.path.exists(outputFolder): os.makedirs(outputFolder)
140

141 # Compute some useful quantities
142 # v_vec is not required by the integrator, but useful
143 self.v_vec = (self.r_vec - self.rprev_vec)/self.dt
144 self.t = self.n * self.dt # prevents numerical rounding errors
145

146 # Serialize state
147 file = open(outputFolder+'/data{}.pickle'.format(self.n), "wb")
148 pickle.dump({'r_vec': self.r_vec, 'v_vec': self.v_vec,
149 'type': self.type, 'mass': self.mass,
150 'CONFIG': self.CONFIG, 't': self.t,
151 'tracks': self.tracks}, file)
152

153 # Save simplified plot of the current state.
154 # Its main use is to detect ill-behaved situations early on.
155 fig = plt.figure()
156 plt.xlim(-5, 5); plt.ylim(-5, 5); plt.axis('equal')
157 # Dark halo is plotted in red, disk in blue, bulge in green
158 PLTCON = [('dark', 'r', 0.3), ('disk', 'b', 1.0), ('bulge', 'g', 0.5)]
159 for type_, c, a in PLTCON:
160 plt.scatter(self.r_vec[self.type[:,0]==type_][:,0],
161 self.r_vec[self.type[:,0]==type_][:,1], s=0.1, c=c, alpha=a)
162 # Central mass as a magenta star
163 plt.scatter(self.r_vec[self.type[:,0]=='center'][:,0],
164 self.r_vec[self.type[:,0]=='center'][:,1], s=100, marker="*", c='m')

165 # Save to png file
166 fig.savefig(outputFolder+'/sim{}.png'.format(self.n), dpi=150)
167 plt.close(fig)
168

169 def project(self, theta, phi, view=0):
170 """Projects the 3D simulation onto a plane as viewed from the
171 direction described by the (theta, phi, view). Angles in radians.
172 (This is used by the simulated annealing algorithm)
173

174 Parameters:
175 theta (float): polar angle.
176 phi (float): azimuthal angle.
177 view (float): rotation along line of sight.
178 """
179 M1 = np.array([[np.cos(phi), np.sin(phi), 0],
180 [-np.sin(phi), np.cos(phi), 0],
181 [0, 0, 1]])
182 M2 = np.array([[1, 0, 0],
183 [0, np.cos(theta), np.sin(theta)],
184 [0, -np.sin(theta), np.cos(theta)]])
185 M3 = np.array([[np.cos(view), np.sin(view), 0],
186 [-np.sin(view), np.cos(view), 0],
187 [0, 0, 1]])
188

189 M = np.matmul(M1, np.matmul(M2, M3)) # combine rotations
190 r = np.tensordot(self.r_vec, M, axes=[1, 0])
191

192 return r[:,0:2]
193

194 def setOrbit(self, galaxy1, galaxy2, e, rmin, R0):
195 """Sets the two galaxies galaxy1, galaxy2 in an orbit.
196

197 Parameters:
198 galaxy1 (Galaxy): 1st galaxy (main)
199 galaxy2 (Galaxy): 2nd galaxy (companion)
200 e: eccentricity of the orbit
201 rmin: distance of closest approach
202 R0: initial separation
203 """
204 m1, m2 = np.sum(galaxy1.mass), np.sum(galaxy2.mass)
205 # Relevant formulae:
206 # r0 = r(1 + e) cos(�), where r0 (6= R0) is the semi-latus rectum
207 # r0 = rmin(1 + e)
208 # v2 = GM(2/r � 1/a), where a is the semimajor axis
209

210 # Solve the reduced two-body problem with reduced mass µ (mu)
211 M = m1 + m2
212 r0 = rmin * (1 + e)

– 31 –

213 try:
214 phi = np.arccos((r0/R0 - 1) / e) # inverting the orbit equation
215 phi = -np.abs(phi) # Choose negative (incoming) angle
216 ainv = (1 - e) / rmin # ainv = 1/a, as a may be infinite
217 v = np.sqrt(M * (2/R0 - ainv))
218 # Finally, calculate the angle of motion. angle = tan(dy/dx)
219 # dy/dx = ((dr/d�)sin(�) + r cos(�))/((dr/d�)cos(�)� r sin(�))
220 dy = R0/r0 * e * np.sin(phi)**2 + np.cos(phi)
221 dx = R0/r0 * e * np.sin(phi) * np.cos(phi) - np.sin(phi)
222 vangle = np.arctan2(dy, dx)
223 except: raise Exception('''The orbital parameters cannot be satisfied.
224 For elliptical orbits check that R0 is posible (<rmax).''')
225

226 # We now need the actual motion of each body
227 R_vec = np.array([[R0*np.cos(phi), R0*np.sin(phi), 0.]])
228 V_vec = np.array([[v*np.cos(vangle), v*np.sin(vangle), 0.]])
229

230 galaxy1.r_vec += m2/M * R_vec
231 galaxy1.v_vec += m2/M * V_vec
232 galaxy2.r_vec += -m1/M * R_vec
233 galaxy2.v_vec += -m1/M * V_vec
234

235 # Explicitely add the galaxies to the simulation
236 self.add(galaxy1)
237 self.add(galaxy2)
238

239 if self.verbose: print('Galaxies set in orbit.')
240

241

242 ##
243 ##
244 class Galaxy():
245 """"Helper class for creating galaxies.
246

247 Attributes:
248 r_vec (array): position of the particles in the current timestep.
249 Shape: (number of particles, 3)
250 v_vec (array): velocity in the current timestep.
251 Shape: (number of particles, 3)
252 a_vec (array): acceleration in the current timestep.
253 Shape: (number of particles, 3)
254 mass (array): mass of each particle in the simulation.
255 Shape: (number of particles,)
256 type (array): non-unique identifier for each particle.
257 Shape: (number of particles,) """
258 def __init__(self, orientation, centralMass, bulge, disk, halo, sim):
259 """Constructor for the Galaxy class.
260

261 Parameters:
262 orientation (tupple): (inclination i, argument of pericenter w)
263 centralMass (float): mass at the center of the galaxy
264 bulge (dict): passed to the addBulge method.
265 disk (dict): passed to the addDisk method.
266 halo (dict): passed to the addHalo method.
267 sim (Simulation): simulation object
268 """
269 if sim.verbose: print('Initializing galaxy')
270 # Build the central mass
271 self.r_vec = np.zeros((1, 3))
272 self.v_vec = np.zeros((1, 3))
273 self.a_vec = np.zeros((1, 3))
274 self.mass = np.array([centralMass])
275 self.type = np.array([['center', 0]])
276 # Build the other components
277 self.addBulge(**bulge)
278 if sim.verbose: print('Bulge created.')
279 self.addDisk(**disk)
280 if sim.verbose: print('Disk created.')
281 self.addHalo(**halo)
282 if sim.verbose: print('Halo created.')
283 # Correct particles velocities to generate circular orbits
284 # acentripetal = v2/r
285 a_vec = sim.acceleration(self.r_vec, self.mass, soft=sim.soft)
286 a = np.linalg.norm(a_vec, axis=-1, keepdims=True)
287 r = np.linalg.norm(self.r_vec, axis=-1, keepdims=True)
288 v = np.linalg.norm(self.v_vec[1:], axis=-1, keepdims=True)
289 direction_unit = self.v_vec[1:]/v
290 # Set orbital velocities (except for central mass)
291 self.v_vec[1:] = np.sqrt(a[1:] * r[1:]) * direction_unit
292 self.a_vec = np.zeros_like(self.r_vec)
293 # Rotate the galaxy into its correct orientation
294 self.rotate(*(np.array(orientation)/360 * 2*np.pi))
295 if sim.verbose: print('Galaxy set in rotation and oriented.')
296

297 def addBulge(self, model, totalMass, particles, l):
298 """Adds a bulge to the galaxy.
299

300 Parameters:
301 model (string): parametrization of the bulge.
302 'plummer' and 'hernquist' are supported.
303 totalMass (float): total mass of the bulge
304 particles (int): number of particles in the bulge
305 l (float): characteristic length scale of the model.
306 """
307 if particles == 0: return None
308 # Divide the mass equally among all particles

– 33 –

309 mass = np.ones(particles) * totalMass/particles
310 self.mass = np.concatenate([self.mass, mass], axis=0)
311 # Create particles according to the radial distribution from model
312 if model == 'plummer':
313 r = PLUMMER.ppf(np.random.rand(particles), scale=l)
314 elif model == 'hernquist':
315 r = HERNQUIST.ppf(np.random.rand(particles), scale=l)
316 else: raise Exception("""Bulge distribution not allowed.
317 'plummer' and 'hernquist' are the supported values""")
318 r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)
319 self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)
320 # Set them orbitting along random directions normal to r_vec
321 v_vec = np.cross(r_vec, random_unit_vectors(size=particles))
322 self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)
323 # Label the particles
324 type_ = [['bulge', 0]]*particles
325 self.type = np.concatenate([self.type, type_], axis=0)
326

327 def addDisk(self, model, totalMass, particles, l):
328 """Adds a disk to the galaxy.
329

330 Parameters:
331 model (string): parametrization of the disk.
332 'rings', 'uniform' and 'exp' are supported.
333 totalMass (float): total mass of the bulge
334 particles (int): number of particles in the bulge
335 l: fot 'exp' and 'uniform' characteristic length of the
336 model. For 'rings' tupple of the form (inner radius,
337 outer radius, number of rings)
338 """
339 if particles == 0: return None
340 # Create particles according to the radial distribution from model
341 if model == 'uniform':
342 r = UNIFORM.ppf(np.random.rand(particles), scale=l)
343 type_ = [['disk', 0]]*particles
344 r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')
345 self.type = np.concatenate([self.type, type_], axis=0)
346 elif model == 'rings':
347 # l = [inner radius, outter radius, number of rings]
348 distances = np.linspace(*l)
349 # Aim for roughly constant areal density
350 # Cascade rounding preserves the total number of particles
351 perRing = cascade_round(particles * distances / np.sum(distances))
352 particles = int(np.sum(perRing)) # prevents numerical errors
353 r_vec = np.empty((0, 3))
354 for d, n, i in zip(distances, perRing, range(l[2])):
355 type_ = [['disk', i+1]]*int(n)
356 self.type = np.concatenate([self.type, type_], axis=0)

357 phi = np.linspace(0, 2 * np.pi, n, endpoint=False)
358 ringr = d * np.array([[np.cos(i), np.sin(i), 0] for i in phi])
359 r_vec = np.concatenate([r_vec, ringr], axis=0)
360 elif model == 'exp':
361 r = EXP.ppf(np.random.rand(particles), scale=l)
362 r_vec = r[:,np.newaxis] * random_unit_vectors(particles, '2D')
363 type_ = [['disk', 0]]*particles
364 self.type = np.concatenate([self.type, type_], axis=0)
365 else:
366 raise Exception("""Disk distribution not allowed.
367 'uniform', 'rings' and 'exp' are the supported values""")
368 self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)
369 # Divide the mass equally among all particles
370 mass = np.ones(particles) * totalMass/particles
371 self.mass = np.concatenate([self.mass, mass], axis=0)
372 # Set them orbitting along the spin plane
373 v_vec = np.cross(r_vec, [0, 0, 1])
374 self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)
375

376 def addHalo(self, model, totalMass, particles, rs):
377 """Adds a halo to the galaxy.
378

379 Parameters:
380 model (string): parametrization of the halo.
381 Only 'NFW' is supported.
382 totalMass (float): total mass of the halo
383 particles (int): number of particles in the halo
384 rs (float): characteristic length scale of the NFW profile.
385 """
386 if particles == 0: return None
387 # Divide the mass equally among all particles
388 mass = np.ones(particles)*totalMass/particles
389 self.mass = np.concatenate([self.mass, mass], axis=0)
390 # Create particles according to the radial distribution from model
391 if model == 'NFW':
392 r = NFW.ppf(np.random.rand(particles), scale=rs)
393 else: raise Exception("""Bulge distribution not allowed.
394 'plummer' and 'hernquist' are the supported values""")
395 r_vec = r[:,np.newaxis] * random_unit_vectors(size=particles)
396 self.r_vec = np.concatenate([self.r_vec, r_vec], axis=0)
397 # Orbit along random directions normal to the radial vector
398 v_vec = np.cross(r_vec, random_unit_vectors(size=particles))
399 self.v_vec = np.concatenate([self.v_vec, v_vec], axis=0)
400 # Label the particles
401 type_ = [['dark'], 0]*particles
402 self.type = np.concatenate([self.type, type_], axis=0)
403

404 def rotate(self, theta, phi):

– 35 –

405 """Rotates the galaxy so that its spin is along the (theta, phi)
406 direction.
407

408 Parameters:
409 theta (float): polar angle.
410 phi (float): azimuthal angle.
411 """
412 M1 = np.array([[1, 0, 0],
413 [0, np.cos(theta), np.sin(theta)],
414 [0, -np.sin(theta), np.cos(theta)]])
415 M2 = np.array([[np.cos(phi), np.sin(phi), 0],
416 [-np.sin(phi), np.cos(phi), 0],
417 [0, 0, 1]])
418 M = np.matmul(M1, M2) # combine rotations
419 self.r_vec = np.tensordot(self.r_vec, M, axes=[1, 0])
420 self.v_vec = np.tensordot(self.v_vec, M, axes=[1, 0])

Shared C++ library

acclib.cpp

1 #include <vector>
2 #include <iostream>
3 #include <math.h>
4 #include <chrono>
5

6 using namespace std;
7 using namespace std::chrono;
8 #include "Node.h"
9

10

11 /*
12 Calculates the self gravitational acceleration for a set of particles located
13 at r_vec (n, 3) with masses m_vec (n,) using a Barnes-Hut tree with theta = 0.7
14

15 Parameters:
16 r_vec: the position of the particles.
17 m_vec: the masses of the particles.
18 n: the number of particles. This cannot be infered by C++ and must be
19 passed directly.
20 size: size of the top node in the octtree.
21 px, py, pz: coordinates of the lowest corner of the top node.
22 size: characteristic softening scale.
23

24 Returns:
25 The accelerations computed for each mass (n, 3).
26 */
27 extern "C" double* barnesHutCPP(double** r_vec, double* m_vec, int n,

28 double size, double px, double py, double pz, double soft){
29 // Create nodes
30 std::vector<Node*> nodes;
31 for (int i = 0; i < n; i++){
32 nodes.push_back(new Node(r_vec[i], m_vec[i]));
33 }
34

35 // Create the tree
36 Node* tree = new Node(nodes, size, px, py, pz);
37

38 // Calculate the accelerations for each node. We want to return the
39 // result as an array and use a 1D array for simplicity since this will
40 // be allocated continously in the heap and can be reshaped in Numpy.
41 double* accel = new double[3*n];
42 for (int i = 0; i < nodes.size(); i++){
43 nodes[i]->treeWalk(*tree, 0.7, soft); // thetamax = 0.7
44 accel[3*i+0] = nodes[i]->g[0];
45 accel[3*i+1] = nodes[i]->g[1];
46 accel[3*i+2] = nodes[i]->g[2];
47 }
48

49 // Return as an (n,) array
50 return accel;
51 }
52

53 /*
54 Calculates the self gravitational acceleration for a set of particles located
55 at r_vec (n, 3) with masses m_vec (n,) using Brute Force pairwise summation.
56 Massive particles must appear first.
57

58 Parameters:
59 r_vec: the position of the particles.
60 m_vec: the masses of the particles.
61 n: the number of particles. This cannot be infered by C++ and must be
62 passed directly.
63 size: characteristic softening scale.
64

65 Returns:
66 The accelerations computed for each mass (n, 3).
67 */
68 extern "C" double* bruteForceCPP(double** r_vec, double* m_vec,
69 int n, double soft){
70

71 // Initialize result and fill with 0s
72 // Use a 1D array so as not to have to convert back in Numpy
73 double* accel = new double[3*n];
74 for (int i=0; i<3*n; i++){
75 accel[i] = 0;

– 37 –

76 }
77

78 // Compute the acceleration
79 for (int i=0; i<n; i++){
80 // Only consider pairs with at least one massive particle i
81 if (m_vec[i] == 0.) break;
82 for (int j=i+1; j<n; j++){
83 // Distance between particles
84 double delta[3];
85 for (int k = 0; k < 3; k++) delta[k] = r_vec[j][k] - r_vec[i][k];
86 double r = sqrt(delta[0]*delta[0]
87 + delta[1]*delta[1]
88 + delta[2]*delta[2]);
89 double tripler = (r+soft) * (r+soft) * r;
90

91 // Compute acceleration on first particle
92 double mr3inv = m_vec[i]/tripler;
93 for (int k = 0; k < 3; k++) accel[3*j+k] -= mr3inv * delta[k];
94

95 // Compute acceleration on second particle
96 // For pairs with one massless particle, no reaction force
97 if (m_vec[j] == 0.) break;
98 // Otherwise, opposite direction (+)
99 mr3inv = m_vec[j]/tripler;

100 for (int k = 0; k < 3; k++) accel[3*i+k] += mr3inv * delta[k];
101 }
102 }
103

104 // Return as an (n,) array
105 return accel;
106 }

Node.h

1 #include <vector>
2

3 /*
4 Node class for the Barnes-Hut tree. The choice of pointers as opposed
5 to references is driven by the necessity to interact with Numpy arrays
6 using ctypes.
7 */
8 class Node{
9 private:

10 double COM[3]; // Center of mass
11 double m; // Mass of the node
12 double size; // Size of box, equal for all dimensions
13 std::vector<Node*> children;
14

15 public:

16 double g[3]; // Gravitational acceleration on the node
17

18 // Constructors
19 Node(const std::vector<Node*> &pBodies, const double pSize,
20 const double px, const double py, const double pz);
21 Node(const double* pr_vec, const double pm);
22

23 // Methods
24 void treeWalk(const Node &node, const double thetamax, const double soft);
25 };

Node.cpp

1 #include "Node.h"
2 #include <vector>
3 #include <iostream>
4 #include <math.h>
5 using namespace std;
6

7 /*
8 Node constructor. Used recursively to build the Barnes-Hut tree. px, py, pz
9 denote the corner (lowest value for each dimension) of the box of size pSize.

10 pBodies is a vector containing all the nodes that must be placed in this box.
11 */
12 Node::Node(const vector<Node*> &pBodies, const double pSize,
13 const double px, const double py, const double pz){
14 size = pSize; // Required later for treeWalk
15

16 // Divide into subnodes (octants)
17 vector<Node*> subBodies[2][2][2];
18

19 for (int i = 0; i < pBodies.size(); i++){
20 int xIndex, yIndex, zIndex;
21

22 if (pBodies[i]->COM[0] < (px + (size / 2))) xIndex = 0;
23 else xIndex = 1;
24

25 if (pBodies[i]->COM[1] < (py + (size / 2))) yIndex = 0;
26 else yIndex = 1;
27

28 if (pBodies[i]->COM[2] < (pz + (size / 2))) zIndex = 0;
29 else zIndex = 1;
30

31 subBodies[xIndex][yIndex][zIndex].push_back(pBodies[i]);
32 }
33

34

35 // Recursively place the nodes
36 // g++ will unroll these loops

– 39 –

37 for (int i = 0; i < 2; i++){
38 for (int j = 0; j < 2; j++){
39 for (int k = 0; k < 2; k++){
40 switch(subBodies[i][j][k].size()){
41 case 0: continue;
42 case 1:
43 subBodies[i][j][k][0]->size = size/2;
44 children.push_back(subBodies[i][j][k][0]);
45 break;
46 default:
47 children.push_back(new Node(subBodies[i][j][k], size/2,
48 px + size/2*i, py + size/2*j, pz + size/2*k));
49 }
50 }
51 }
52 }
53

54 // Recursively calculate the COM
55 memset(COM, 0, sizeof(COM)); // Set COM to 0s
56 m = 0.; // mass
57 for (int i = 0; i < children.size(); i++){
58 m += children[i]->m;
59 for (int j = 0; j < 3; j++)
60 COM[j] += children[i]->m * children[i]->COM[j];
61 }
62 // COM only relevant if there is mass in the octant
63 if (m > 0) for (int i = 0; i < 3; i++) COM[i] /= m;
64

65 }
66

67 /*
68 Node constructor. Used to build the leaf nodes directly from the data passed
69 from Python using ctypes.
70 */
71 Node::Node(const double* pr_vec, const double pm){
72 // Initialize a node (leaf)
73 for (int i = 0; i < 3; i++) COM[i] = pr_vec[i];
74 memset(g, 0, sizeof(g)); // Set g to 0s
75 m = pm; // mass
76 }
77

78 /*
79 Calculate the acceleration at the this node. Used recursively calling
80 treeWalk(topNode, thetamax). This is O(log n) and will be called for
81 each node in the tree: O(n log n). Soft defines the characteristic
82 plummer softening scale.
83 */
84 void Node::treeWalk(const Node &node,

85 const double thetamax, const double soft){
86 // Calculate distance to node
87 double delta[3];
88 for (int i = 0; i < 3; i++) delta[i] = node.COM[i] - COM[i];
89 double r = sqrt(delta[0]*delta[0] + delta[1]*delta[1] + delta[2]*delta[2]);
90

91 if (r==0) return; // Do not interact with self
92

93 // If it satisfies the size/r < thetamax criterion, add the g contribution
94 if (node.children.size() == 0 || node.size/r < thetamax){
95 double tripler = (r+soft) * (r+soft) * r;
96 for(int i = 0; i < 3; i++) g[i] += node.m * delta[i] / tripler;
97 }
98 else{ // Otherwise recurse into its children
99 for (int i = 0; i < node.children.size(); i++){

100 treeWalk((*node.children[i]), thetamax, soft);
101 }
102 }
103 }

Other

analysis/segmentation.py

1 """Segmentation algorithm used to identify the different structures
2 that are formed in the encounter. This file can be called from the
3 command line to make an illustrative plot of the algorithm.
4 """
5

6 import numpy as np
7 import matplotlib.pyplot as plt
8 import matplotlib.patches as patches
9

10 import utils
11

12

13 def segmentEncounter(data, plot=False, mode='all'):
14 """Segment the encounter into tail, bridge, orbitting and
15 stolen particles as described in the report.
16

17 Parameters:
18 data: A data instance as saved by the simulation to a pickle file
19 plot: If true the segmentation will be plotted and shown. Highly
20 useful for debugging.
21 mode (string): If mode is 'all' all parts of the encounter will be
22 identified. If mode is 'bridge' only the bridge will be
23 identified. This is useful when there may be no tail.
24

– 41 –

25 Returns:
26 masks (tupple): tupple of array corresponding to the masks of the
27 (bridge, stolen, orbitting, tail) particles. One can then use
28 e.g. data['r_vec'][bridgeMask].
29 shape (tupple): tupple of (distances, angles) as measured from the
30 center of mass and with respect to the x axis. They define the
31 shape of the tail
32 length (float): total length of the tail.
33 """
34 nRings = 100 # number of rings to use when segmenting the data
35

36 # Localize the central masses
37 r_vec = data['r_vec']
38 centers = r_vec[data['type'][:,0]=='center']
39 rCenters_vec = centers[1] - centers[0]
40 rCenters = np.linalg.norm(rCenters_vec)
41 rCenters_unit = rCenters_vec/np.linalg.norm(rCenters_vec)
42 # Take particles to be on the tail a priori and
43 # remove them as they are found in other structures
44 particlesLeft = np.arange(0, len(r_vec))
45

46

47 if plot:
48 colour = '#c40f4c'
49 f, axs = plt.subplots(1, 3, figsize=(9, 4), sharey=False)
50 f.subplots_adjust(hspace=0, wspace=0)
51 axs[0].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
52 axs[0].axis('equal')
53 utils.plotCenterMasses(axs[0], data)
54 axs[0].axis('off')
55

56 # Step 1: project points to see if they are part of the bridge
57 parallelProjection = np.dot(r_vec - centers[0], rCenters_unit)
58 perpendicularProjection = np.linalg.norm(r_vec - centers[0][np.newaxis]
59 - parallelProjection[:,np.newaxis] * rCenters_unit[np.newaxis], axis=-1)
60 bridgeMask = np.logical_and(np.logical_and(0.3*rCenters < parallelProjection,
61 parallelProjection < .7*rCenters), perpendicularProjection < 2)
62

63 # Remove the bridge
64 notInBridge = np.logical_not(bridgeMask)
65 r_vec = r_vec[notInBridge]
66 particlesLeft = particlesLeft[notInBridge]
67

68 if mode == 'bridge':
69 return (bridgeMask, None, None, None), None, None
70

71 # Step 2: select stolen particles by checking distance to centers
72 stolenMask = (np.linalg.norm(r_vec - centers[0][np.newaxis], axis=-1)

73 > np.linalg.norm(r_vec - centers[1][np.newaxis], axis=-1))
74 # Remove the stolen part
75 notStolen = np.logical_not(stolenMask)
76 r_vec = r_vec[notStolen]
77 particlesLeft, stolenMask = particlesLeft[notStolen], particlesLeft[stolenMask]
78

79 # Step 3: segment data into concentric rings (spherical shells really)
80 r_vec = r_vec - centers[0]
81 r = np.linalg.norm(r_vec, axis=-1)
82 edges = np.linspace(0, 30, nRings) # nRings concentric spheres
83 indices = np.digitize(r, edges) # Classify particles into shells
84

85 if plot:
86 axs[1].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=.1, s=.1)
87 axs[1].axis('equal')
88 axs[1].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
89 axs[1].axis('off')
90

91 # Step 4: find start of tail
92 start = None
93 for i in range(1, nRings+1):
94 rMean = np.mean(r[indices==i])
95 rMean_vec = np.mean(r_vec[indices==i], axis=0)
96 parameter = np.linalg.norm(rMean_vec)/rMean
97

98 if plot:
99 circ = patches.Circle((0,0), edges[i-1], linewidth=0.5,edgecolor='black',facecolor='none', alpha=.7)

100 axs[1].add_patch(circ)
101 txtxy = edges[i-1] * np.array([np.sin(i/13), np.cos(i/13)])
102 axs[1].annotate("{:.2f}".format(parameter), xy=txtxy, backgroundcolor='#ffffff55')
103

104 if start is None and parameter>.8 :
105 start = i #Here starts the tail
106 startDirection = rMean_vec/np.linalg.norm(rMean_vec)
107 if not plot: break;
108

109 if start is None: #abort if nothing found
110 raise Exception('Could not identify tail')
111

112 # Step 5: remove all circles before start
113 inInnerRings = indices < start
114 # Remove particles on the opposite direction to startDirection.
115 # in the now innermost 5 rings. Likely traces of the bridge.
116 oppositeDirection = np.dot(r_vec, startDirection) < 0
117 in5InnermostRings = indices <= start+5
118 orbitting = np.logical_or(inInnerRings,
119 np.logical_and(oppositeDirection, in5InnermostRings))
120 orbittingMask = particlesLeft[orbitting]

– 43 –

121 r_vec = r_vec[np.logical_not(orbitting)]
122 tailMask = particlesLeft[np.logical_not(orbitting)]
123

124 if plot:
125 axs[2].scatter(r_vec[:,0], r_vec[:,1], c=colour, alpha=0.1, s=0.1)
126 axs[2].axis('equal')
127 axs[2].scatter(0, 0, s=100, marker="*", c='black', alpha=.7)
128 axs[2].axis('off')
129

130 # Step 6: measure tail length and shape
131 r = np.linalg.norm(r_vec, axis=-1)
132 indices = np.digitize(r, edges)
133 # Make list of barycenters
134 points = [list(np.mean(r_vec[indices==i], axis=0))
135 for i in range(1, nRings) if len(r_vec[indices==i])!=0]
136 points = np.array(points)
137 # Calculate total length
138 lengths = np.sqrt(np.sum(np.diff(points, axis=0)**2, axis=1))
139 length = np.sum(lengths)
140 # Shape (for 2D only)
141 angles = np.arctan2(points[:,1], points[:,0])
142 distances = np.linalg.norm(points, axis=-1)
143 shape = (distances, angles)
144

145 if plot:
146 axs[2].plot(points[:,0], points[:,1], c='black', linewidth=0.5, marker='+')
147

148 if plot:
149 plt.show()
150

151 return (bridgeMask, stolenMask, orbittingMask, tailMask), shape, length
152

153

154 if __name__ == "__main__":
155 data = utils.loadData('200mass', 10400)
156 segmentEncounter(data, plot=True)

run_simulated_annealing.py

1 """Simulated annealing algorithm used to match the simulation of the
2 Antennae to the observations by comparing binarized images."""
3

4 import numpy as np
5 import scipy
6 import pickle
7 from scipy import ndimage
8 from fast_histogram import histogram2d
9 from scipy.signal import convolve2d

10 from numba import jit

11 from matplotlib.image import imread
12 import datetime
13

14 from simulation import Simulation, Galaxy
15

16 T = .25 # Initial tempreature
17 STEPS = 1500
18 DECAY = .998 # Exponential decay factor
19

20 def simToBitmap(sim, theta, phi, view, scale, x, y, galaxy):
21 """Obtain a bitmap of one galaxy as viewed from a given direction.
22 The binning has been chosen so that the scale and the offset (x,y)
23 are expected to be approximately 1 and (0, 0) respectively.
24

25 Parameters:
26 sim (Simulation): Simulation to project.
27 theta (float): polar angle of viewing direction.
28 phi (float): azimuthal angle of viewing direction.
29 view (float): rotation angle along viewing direction.
30 scale (float): scaling factor.
31 x (float): x offset
32 y (float): y offset
33 galaxy (int): galaxy to plot. Either 0, or 1. They are assumed
34 to have the same number of particles.
35 """
36 # Obtain components in new x',y' plane
37 r_vec = (sim.project(theta, phi, view) - [[x+.12,y+1.3]]) * scale
38 # Select a single galaxy. We match them separately in the algorithm.
39 if galaxy==0: r_vec = r_vec[2:len(r_vec)//2-1] #omit central masses
40 if galaxy==1: r_vec = r_vec[len(r_vec)//2-1:]
41 # Use a fast histogram, much faster than numpy ()
42 H = histogram2d(r_vec[:,0], r_vec[:,1],
43 range=[[-5,5], [-5,5]], bins=(50, 50))
44 im = np.zeros((50, 50))
45 H = convolve2d(H, np.ones((2,2)), mode='same') # Smooth the image
46 im[H>=1] = 1 # Binary the image
47

48 return im
49

50 @jit(nopython=True) # Numba annotation
51 def bitmapScoreAlgo(im1, im2):
52 """Computes the f1 score betwen two binarized images
53

54 Parameters
55 im1 (arr): nxm ground truth image
56 im2 (arr): nxm candidate image
57

58 Returns

– 45 –

59 f1 score
60 """
61 TP = np.sum((im1==1.0) & (im2==1.0))
62 TN = np.sum((im1==0.0) & (im2==0.0))
63 FP = np.sum((im1==0.0) & (im2==1.0))
64 FN = np.sum((im1==1.0) & (im2==0.0))
65 if TP==0: return 0
66 precision = TP/(TP+FP)
67 recall = TP/(TP+FN)
68 return 2*precision*recall / (precision + recall)
69

70 # The matching algorithm attempts to improve the match by shifting the
71 # image by one pixel in each direction. If none improve the score the
72 # f1-score of said local maximum is retuned. To make this highly efficient
73 # (as this is run millions of time) we explicitely write functions to
74 # shift an image by 1 pixel in each direction, as these can then be compiled
75 # using Numba (jit annotation) to low-level code.
76 # Performance is crucial here and must sadly be prioritized over conciseness
77 @jit(nopython=True)
78 def shiftBottom(im, im2):
79 """Shifts an image by one pixel downwards.
80

81 Parameters:
82 im (arr): the nxm image to shift by one pixel.
83 im2 (arr): an nxm array where the new image will be placed.
84

85 Returns:
86 A reference to im2
87 """
88 im2[1:] = im[:-1]
89 im2[0] = 0
90 return im2
91

92 @jit(nopython=True)
93 def shiftTop(im, im2):
94 """Shifts an image by one pixel upwards."""
95 im2[:-1] = im[1:]
96 im2[-1] = 0
97 return im2
98

99 @jit(nopython=True)
100 def shiftLeft(im, im2):
101 """Shifts an image by one pixel to the left."""
102 im2[:,1:] = im[:,:-1]
103 im2[:,0] = 0
104 return im2
105

106 @jit(nopython=True)

107 def shiftRight(im, im2):
108 """Shifts an image by one pixel to the right."""
109 im2[:,:-1] = im[:,1:]
110 im2[:,-1] = 0
111 return im2
112

113 @jit
114 def bitmapScore(im1, im2, _prev=None, _bestscore=None, _zeros=None):
115 """Computes the bitmap score between two images. This is the f1-score
116 but we allow the algorithm to attempt to improve the score by
117 shifting the images. The algorithm is implemented recursively.
118

119 Parameters:
120 im1 (array): The ground truth nxm image.
121 im2 (array): The candidate nxm imgae.
122 _prev: Used internally for recursion.
123 _bestscore: Used internally for recursion.
124 _zeros: Used internally for recursion.
125

126 Returns:
127 f1-score for the two images.
128 """
129 # When the function is called externally, initialize an array of zeros
130 # and compute the score for no shifting. The zeros array is used for
131 # performance to only create a new array once.
132 if _bestscore is None:
133 _bestscore = bitmapScoreAlgo(im1, im2)
134 _zeros = np.zeros_like(im2)
135 # Attempt to improve the score by shifting the image in a direction
136 # Keeping track of _prev allows to not 'go back' and undo and attempt
137 # to undo a shift needlessly.
138 if _prev is not 0: # try left
139 shifted = shiftLeft(im2, _zeros)
140 score = bitmapScoreAlgo(im1, shifted)
141 if score > _bestscore: return bitmapScore(im1, shifted,
142 _prev=1, _bestscore=score, _zeros=_zeros)
143 if _prev is not 1: # try right
144 shifted = shiftRight(im2, _zeros)
145 score = bitmapScoreAlgo(im1, shifted)
146 if score > _bestscore: return bitmapScore(im1, shifted,
147 _prev=0, _bestscore=score, _zeros=_zeros)
148 if _prev is not 2: # try top
149 shifted = shiftTop(im2, _zeros)
150 score = bitmapScoreAlgo(im1, shifted)
151 if score > _bestscore: return bitmapScore(im1, shifted,
152 _prev=3, _bestscore=score, _zeros=_zeros)
153 if _prev is not 3: # try bottom
154 shifted = shiftBottom(im2, _zeros)

– 47 –

155 score = bitmapScoreAlgo(im1, shifted)
156 if score > _bestscore: return bitmapScore(im1, shifted,
157 _prev=2, _bestscore=score, _zeros=_zeros)
158 # Return _bestscore if shifting did not improve (local maximum).
159 return _bestscore
160

161

162 def attemptSimulation(theta1, phi1, theta2, phi2, rmin=1, e=.5, R=2,
163 disk1=.75, disk2=.65, mu=1, plot=False, steps=2000):
164 """Runs a simulation with the given parameters and compares it
165 to observations of the antennae to return a score out of 2.
166

167 Parameters:
168 theta1 (float): polar angle for the spin of the first galaxy.
169 phi1 (float): azimuthal angle for the spin of the first galaxy.
170 theta2 (float): polar angle for the spin of the second galaxy.
171 phi2 (float): azimuthal angle for the spin of the second galaxy.
172 rmin (float): closest distance of approach of orbit.
173 e (float): eccentricity of the orbit.
174 R (float): initial separation
175 disk1 (float): radius of the uniform disk of the first galaxy
176 disk2 (float): radius of the uniform disk of the first galaxy
177 mu (float): ratio of masses of the two galaxies
178 plot (float): if true the simulation will be saved to data/annealing/
179 steps (float): number of times the f1 score will be computed, along
180 random viewing directions per 100 timesteps.
181

182 Returns:
183 f1-score: score obtained by the simulation.
184 """
185

186 # Initialize the simulation
187 sim = Simulation(dt=1E-3, soft=0.1, verbose=False, CONFIG=None, method='bruteForceNumbaOptimized')
188 galaxy1 = Galaxy(orientation = (theta1, phi1), centralMass=2/(1+mu),
189 sim=sim, bulge={'model':'plummer', 'particles':0, 'totalMass':0, 'l':0},
190 disk={'model':'uniform', 'particles':2000, 'l':disk1, 'totalMass':0},
191 halo={'model':'NFW', 'particles':0, 'rs':1, 'totalMass':0})
192 galaxy2 = Galaxy(orientation = (theta2, phi2), centralMass=2*mu/(1+mu),
193 sim=sim, bulge={'model':'plummer', 'particles':0, 'totalMass':0, 'l':0},
194 disk={'model':'uniform', 'particles':2000, 'l':disk2, 'totalMass':0},
195 halo={'model':'NFW', 'particles':0, 'rs':1, 'totalMass':0})
196 sim.setOrbit(galaxy1, galaxy2, e=e, R0=R, rmin=rmin) # define the orbit
197

198 # Run the simulation manually
199 # Initialize the parameters consistently with the velocities
200 sim.rprev_vec = sim.r_vec - sim.v_vec * sim.dt
201 # Keep track of the best score
202 bestScore = 0

203 # and its corresponding binarized image and parameters
204 bestImage, bestParams = 0, 0
205 hasReachedPericenter = False
206

207 # Run until tmax = 25
208 for i in range(25001):
209 sim.step()
210 if i%100==0: # Every �t = 0.1
211 # Check if we are close to pericenter
212 centers = sim.r_vec[sim.type[:,0] == 'center']
213 if np.linalg.norm(centers[0] - centers[1]) < 1.3*rmin:
214 hasReachedPericenter = True
215 # Do not evaluate the f1-score until pericenter.
216 if not hasReachedPericenter: continue
217

218 # Check multiple (steps) viewing directions at random
219 localBestScore = 0
220 localBestImage, localBestParams = 0, 0
221 for j in range(steps):
222 # The viewing directions are isotropically distributed
223 theta = np.arccos(np.random.uniform(-1, 1))
224 phi = np.random.uniform(0, 2*np.pi)
225 # Rotation along line of sight
226 view = np.random.uniform(0, 2*np.pi)
227 scale = np.random.uniform(0.6, 1.0)
228 x = np.random.uniform(-1.0, 1.0) # Offsets
229 y = np.random.uniform(-1.0, 1.0)
230 # Get images for each galaxy and compute their score separately
231 im1 = simToBitmap(sim, theta, phi, view, scale, x, y, galaxy=0)
232 im2 = simToBitmap(sim, theta, phi, view, scale, x, y, galaxy=1)
233 score = bitmapScore(GT1, im1) + bitmapScore(GT2, im2)
234 if score > localBestScore:
235 localBestScore = score
236 localBestImage = [im1,im2]
237 localBestParams = [i, theta, phi, view, scale, x, y]
238

239 if bestScore < localBestScore:
240 bestScore = localBestScore
241 bestImage = localBestImage
242 bestParams = localBestParams
243 if plot:
244 sim.save('annealing', type='2D')
245

246 print('Best score for this attempt', bestScore)
247 print('using viewing parameters', bestParams)
248

249 return bestScore
250

– 49 –

251

252 ##
253 ##
254

255 # Generate a (50, 50) bitmap for each galaxy
256 # They are stored globally in GT1 and GT2 (Ground Truth)
257 im = imread('literature/figs/g1c.tif')
258 im = np.mean(im, axis=-1)
259 im = scipy.misc.imresize(im, (50,50))
260 GT1 = np.zeros((50, 50))
261 GT1[im > 50] = 1
262

263 im = imread('literature/figs/g2c.tif')
264 im = np.mean(im, axis=-1)
265 im = scipy.misc.imresize(im, (50,50))
266 GT2 = np.zeros((50, 50))
267

268 # Define the limits and relate scale of the variations in each parameter
269 # In the same order as attemptSimulation
270 # phi1, theta1, phi2, theta2, rmin (fixed), e, R (fixed), disk1, disk2
271 LIMITS = np.array([[np.pi, 2 * np.pi], [-np.pi, np.pi],
272 [0, np.pi], [-np.pi, np.pi],
273 [1,1], [.5,1.0], [2.2,2.2], [.5,.8], [.5,.8]])
274 VARIATIONS = np.array([.08, .15, .08, .15, 0, .01, 0, .01, .01])
275

276 # Choose a random starting point and evaluate it
277 bestparams = [np.random.uniform(*l) for l in LIMITS]
278 log = []
279 bestscore = attemptSimulation(*bestparams, steps=500)
280 print('Starting with score', bestscore, 'with parameters', bestparams)
281 log.append([bestscore, bestparams, True])
282

283 for i in range(STEPS):
284 T = T * DECAY #exponential decay
285 # Perturb the parameters
286 params = bestparams + np.random.normal(scale=VARIATIONS) * 2 * T / 0.04
287 # Allow the angles from �⇡ to ⇡ to wrap around
288 for j in [1,3]:
289 params[j] = np.mod(params[j] - LIMITS[j][0], LIMITS[j][1] - LIMITS[j][0])
290 params[j] += LIMITS[j][0]
291 # Clip parameters outside their allowed range
292 params = np.clip(params, LIMITS[:, 0], LIMITS[:, 1])
293 # Evaluate the score for this attempt, use more steps as i progresses
294 # so as to reduce the noise in the evaluation of the score
295 score = attemptSimulation(*params, steps=500 + i)
296 # Perform simulated annealing with a typical exponential rule
297 if score > bestscore or np.exp(-(bestscore-score)/T) > np.random.rand():
298 # Flip to this new point

299 print('NEW BEST ____', i, T, score, params)
300 bestscore = score
301 bestparams = params
302 log.append([score, params, True])
303 else: # Remain in the old point
304 log.append([score, params, False])
305 # Save the progress for future plotting
306 pickle.dump(log, open('data/logs/logb.pickle', "wb"))

References

[1] F. Zwicky, Luminous and dark formations of intergalactic matter, Physics Today 6 (1953)
7–11.

[2] J. C. Mihos and L. Hernquist, Gasdynamics and Starbursts in Major Mergers, 464 (June,
1996) 641, [astro-ph/9512099].

[3] K. M. Dasyra et al., Dynamical properties of ultraluminous infrared galaxies. I. mass ratio
conditions for ulirg activity in interacting pairs, Astrophys. J. 638 (2006) 745–758,
[astro-ph/0510670].

[4] A. Toomre et al., Evolution of galaxies and stellar populations, in Proceedings of a
Conference at Yale University, May, pp. 19–21, 1977.

[5] T. Naab et al., Minor Mergers and the Size Evolution of Elliptical Galaxies, 699 (July,
2009) L178–L182, [arXiv:0903.1636].

[6] A. Toomre and J. Toomre, Galactic bridges and tails, The Astrophysical Journal 178 (1972)
623–666.

[7] J. E. Barnes, Encounters of disk/halo galaxies, 331 (Aug., 1988) 699–717.

[8] J. C. Mihos et al., Modeling the Spatial Distribution of Star Formation in Interacting Disk
Galaxies, 418 (Nov., 1993) 82.

[9] J. Barnes and P. Hut, A hierarchical o (n log n) force-calculation algorithm, nature 324
(1986), no. 6096 446.

[10] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The astronomical
journal 82 (1977) 1013–1024.

[11] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory and application
to non-spherical stars, Monthly notices of the royal astronomical society 181 (1977), no. 3
375–389.

[12] P.-A. Duc and F. Renaud, Tides in colliding galaxies, in Tides in astronomy and
astrophysics, pp. 327–369. Springer, 2013. astro-ph/1112.1922.

[13] I. Chilingarian et al., The GalMer database: galaxy mergers in the virtual observatory,
Astronomy & Astrophysics 518 (2010) A61, [astro-ph/1003.3243].

[14] S. J. Karl et al, One moment in time - modeling star formation in the antennae, The
Astrophysical Journal Letters 715 (2010), no. 2 L88, [astro-ph/1003.0685].

[15] R. Teyssier et al., The driving mechanism of starbursts in galaxy mergers, The Astrophysical
Journal Letters 720 (2010), no. 2 L149, [astro-ph/1006.4757].

– 51 –

[16] M. Maji et al., The formation and evolution of star clusters in interacting galaxies, The
Astrophysical Journal 844 (2017), no. 2 108, [astro-ph/1606.07091].

[17] P. A. M. Belles, Formation of stars and star clusters in colliding galaxies. PhD thesis, 2013.

[18] S. Aarseth and F. Hoyle, Dynamical evolution of clusters of galaxies, i, Monthly Notices of
the Royal Astronomical Society 126 (1963), no. 3 223–255.

[19] C. D. Wilson et al., High-resolution imaging of molecular gas and dust in the antennae (ngc
4038/39): super giant molecular complexes, The Astrophysical Journal 542 (2000), no. 1 120,
[astro-ph/0005208].

[20] J. Hibbard et al., High-Resolution H I Mapping of NGC 4038/39 (“The Antennae”) and Its
Tidal Dwarf Galaxy Candidates, [astro-ph/0110581].

[21] J. E. Barnes et al., Identikit 1: A modeling tool for interacting disk galaxies, The
Astronomical Journal 137 (2009), no. 2 3071, [astro-ph/0811.3039].

[22] J. E. Barnes, Identikit 2: an algorithm for reconstructing galactic collisions, Monthly Notices
of the Royal Astronomical Society 413 (2011), no. 4 2860–2872, [astro-ph/1101.5671].

[23] J. B. Smith et al., The automatic galaxy collision software, arXiv preprint arXiv:0908.3478
(2009) [astro-ph/0908.3478].

[24] S. Karl, The Antennae Galaxies-a key to galactic evolution. PhD thesis, 2011.

[25] C. Oh, E. Gavves, and M. Welling, BOCK : Bayesian Optimization with Cylindrical Kernels,
arXiv e-prints (Jun, 2018) arXiv:1806.01619, [arXiv:1806.01619].

[26] S. J. K. et al.", Towards an accurate model for the Antennae Galaxies, Astron. Nachr. 329
(2008) 1042, [arXiv:0809.5020].

[27] M. Noguchi, Triggering of repetitive starbursts in merging galaxies, Monthly Notices of the
Royal Astronomical Society 251 (1991), no. 2 360–368.

[28] M. Wetzstein, T. Naab, and A. Burkert, Do dwarf galaxies form in tidal tails?, Mon. Not.
Roy. Astron. Soc. 375 (2007) 805–820, [astro-ph/0510821].

	Introduction
	Parabolic encounters
	Analysis & implementation
	Prograde and retrograde encounters
	A quantitative analysis
	Extending the geometry

	Dark matter halos
	Computational performance
	Orbital decay
	Structure of a merger remnant

	The Antennae galaxies
	Analysis & implementation: Automated matching
	Observations and the Hydrogen 21-cm line

	Conclusions
	Source code listing

