server.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. import time
  2. from struct import *
  3. import ctypes
  4. import array
  5. import numpy as np
  6. import matplotlib.pyplot as plt
  7. import os
  8. import eel # GUI
  9. from ADUCv2p1 import *
  10. ###################################
  11. ## PYTHON UTILITIES
  12. ###################################
  13. last_wf_number = 0
  14. last_timestamp = 0
  15. def save_waveform():
  16. global last_timestamp, last_wf_number
  17. chip = chips[state["selected_board"]]
  18. data = chip.read_data()
  19. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  20. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  21. gnd_std = np.std(data[state["start_gnd"]:state["stop_gnd"]])
  22. signal_std = np.std(data[state["start"]:state["stop"]])
  23. wf_number = chip.get_wf_cnt()
  24. timestamp = time.time()
  25. print(wf_number, timestamp, last_wf_number, last_timestamp)
  26. if(last_wf_number>0 and wf_number - last_wf_number>0):
  27. state["board_freq"] = (timestamp - last_timestamp)/(wf_number - last_wf_number)
  28. else:
  29. state["board_freq"] = 0
  30. print(state["board_freq"])
  31. last_wf_number, last_timestamp = wf_number, timestamp
  32. tosave = [wf_number, timestamp, state["start"], state["stop"], state["start_gnd"], state["stop_gnd"], state["input_gain"], state["offset"], signal, gnd, signal_std, gnd_std, state["wf_len"]] + list(data)
  33. np.savetxt("data/waveforms/"+str(int(timestamp*100))+".csv", [tosave], delimiter=",", fmt='%10.5f')
  34. # Save more data for long term graphs
  35. tosave = [wf_number, timestamp, signal, gnd, signal-gnd, signal_std, gnd_std, chip.get_mode(), chip.get_out_of_lock(), chip.get_Vout(1), chip.get_Vout(2)]
  36. line = '\n'+','.join(map(str, tosave))
  37. with open('data/long_term.csv','a') as fd:
  38. fd.write(line)
  39. #update_state()
  40. import datetime
  41. @eel.expose
  42. def clean_old_files(path, max_Files):
  43. def sorted_ls(path):
  44. mtime = lambda f: os.stat(os.path.join(path, f)).st_mtime
  45. return list(sorted(os.listdir(path), key=mtime))
  46. del_list = sorted_ls(path)[0:(len(sorted_ls(path))-max_Files)]
  47. for dfile in del_list:
  48. os.remove(path + dfile)
  49. '''for dirpath, dirnames, filenames in os.walk("data/waveforms/"):
  50. for file in filenames:
  51. curpath = os.path.join(dirpath, file)
  52. file_modified = datetime.datetime.fromtimestamp(os.path.getmtime(curpath))
  53. if datetime.datetime.now() - file_modified > datetime.timedelta(hours=10):
  54. os.remove(curpath)'''
  55. @eel.expose
  56. def clean_long_term():
  57. with open('data/long_term.csv','w') as fd:
  58. fd.write('')
  59. @eel.expose
  60. def calibrate_gain():
  61. if(state["mode"]!=0):
  62. error("You must be in learn mode to calibrate the loop gain")
  63. return
  64. message("Calibrating...")
  65. chip = chips[state["selected_board"]]
  66. auto_set_pga = state["auto_set_pga"]
  67. chip.set_auto_set_pga(0) #Stop it while we scan
  68. measurements = []
  69. for Vfine in range(2000, 4000, 100):
  70. chip.set_Vout(2, Vfine)
  71. time.sleep(0.1)
  72. data = chip.read_data()
  73. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  74. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  75. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  76. measurements.append([chip.get_Vout(2), signal-gnd])
  77. chip.set_Vout(2, 3000)
  78. measurements = np.array(measurements)
  79. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  80. print('signal-gnd vs Vfine slope', p[0], 'intercept', p[1])
  81. chip.set_Gain(1/p[0])
  82. print('Gain has been set to 1/slope', 1/p[0])
  83. plt.scatter(measurements[:,0], measurements[:,1], label='Measurements')
  84. plt.plot(np.arange(2000, 4000, 100), np.arange(2000, 4000, 100)*p[0] + p[1], label='Linear fit')
  85. plt.legend()
  86. plt.xlabel('Fine voltage')
  87. plt.ylabel('Photodiode signal')
  88. plt.show()
  89. chip.set_auto_set_pga(auto_set_pga)
  90. update_state()
  91. @eel.expose
  92. def calibrate_coarse_fine_ratio():
  93. if(state["mode"]!=0):
  94. error("You must be in learn mode to calibrate the broad to fine ratio")
  95. return
  96. message("Calibrating...")
  97. chip = chips[state["selected_board"]]
  98. auto_set_pga = state["auto_set_pga"]
  99. chip.set_auto_set_pga(0) #Stop it while we scan
  100. # Scan Vfine
  101. measurements = []
  102. for Vfine in range(2500, 3500, 100):
  103. chip.set_Vout(2, Vfine)
  104. time.sleep(0.1)
  105. data = chip.read_data()
  106. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  107. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  108. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  109. measurements.append([chip.get_Vout(2), signal-gnd])
  110. chip.set_Vout(2, 3000)
  111. measurements = np.array(measurements)
  112. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  113. # Scan Vcoarse
  114. measurements = []
  115. low, high = state["Vlearn"]-100, state["Vlearn"]+100
  116. if(low<0):
  117. low=0
  118. if(high>4000):
  119. high=4000
  120. for Vcoarse in range(low, high, 20):
  121. chip.set_Vlearn(Vcoarse)
  122. time.sleep(0.1)
  123. data = chip.read_data()
  124. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  125. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  126. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  127. measurements.append([chip.get_Vlearn(), signal-gnd])
  128. chip.set_Vlearn(state["Vlearn"])
  129. measurements = np.array(measurements)
  130. q = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  131. # Set to ratio
  132. print('Setting coarse_fine_ratio to', q[0]/p[0])
  133. chip.set_coarse_fine_ratio(q[0]/p[0])
  134. chip.set_auto_set_pga(auto_set_pga)
  135. update_state()
  136. @eel.expose
  137. def measure_response_function():
  138. message("Measuring...")
  139. if(state["mode"]!=0):
  140. error("You must be in learn mode to measure the response function.")
  141. return
  142. chip = chips[state["selected_board"]]
  143. auto_set_pga = state["auto_set_pga"]
  144. chip.set_auto_set_pga(0) #Stop it while we scan
  145. # Scan Vcoarse
  146. measurements = []
  147. for Vcoarse in range(0, 4000, 100):
  148. chip.set_Vlearn(Vcoarse)
  149. time.sleep(0.1)
  150. data = chip.read_data()
  151. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  152. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  153. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  154. measurements.append([chip.get_Vlearn(), signal-gnd])
  155. chip.set_Vlearn(state["Vlearn"])
  156. measurements = np.array(measurements)
  157. plt.plot(measurements[:,0], measurements[:,1])
  158. plt.xlabel('Output voltage')
  159. plt.ylabel('Photodiode signal')
  160. plt.show()
  161. chip.set_auto_set_pga(auto_set_pga)
  162. update_state()
  163. @eel.expose
  164. def sdev_time():
  165. pass
  166. @eel.expose
  167. def noise_power_spectrum():
  168. pass
  169. ###################################
  170. ## EXPOSED GUI COMMUNICATION
  171. ###################################
  172. # Graphs
  173. from os import listdir
  174. @eel.expose
  175. def listFiles(path):
  176. return listdir(path)
  177. @eel.expose
  178. def loadFile(path):
  179. try:
  180. return list(np.loadtxt(path, delimiter=","))
  181. except:
  182. print('Could not load file', path)
  183. @eel.expose
  184. def loadLongTerm():
  185. try:
  186. li = list(np.loadtxt('data/long_term.csv', delimiter=","))
  187. if((li[-1][1]-li[0][1])/60/60 > 24 or len(li)>100000): # Time to clean up, delete until we have less than 90000 points and 20 hours of data
  188. with open('data/long_term.csv') as f, open("data/long_term_tmp.csv", "w") as out:
  189. for x in range(len(li)):
  190. if(len(li)-x>90000 or (li[-1][1]-li[x][1])/60/60 > 20):
  191. next(f)
  192. for line in f:
  193. out.write(line)
  194. os.remove("data/long_term.csv")
  195. os.rename("data/long_term_tmp.csv", "data/long_term.csv")
  196. return [list(l) for l in li]
  197. except:
  198. print('Couldnt load this')
  199. # Expose functions to GUI and do some parameter checking
  200. def error(txt):
  201. eel.error(txt)
  202. eel.renderUI(state)
  203. def warning(txt):
  204. eel.warning(txt)
  205. def message(txt):
  206. eel.message(txt)
  207. @eel.expose
  208. def set_selected_board(n):
  209. if n>len(chips):
  210. error("Selected board does not exist.")
  211. return;
  212. state["selected_board"] = n
  213. update_state()
  214. @eel.expose
  215. def set_pi_freq(freq):
  216. if(freq>100):
  217. error("The communication cannot be this fast. High values are likely to disturb the board.")
  218. return
  219. if(freq<0.01):
  220. error("Frequency must be at least 0.01Hz.")
  221. return
  222. if(freq>10):
  223. warning("High values are likely to disturb the board.")
  224. state["pi_freq"] = freq
  225. eel.renderUI(state)
  226. @eel.expose
  227. def set_remote_trigg(status):
  228. status = int(status)
  229. if status not in [0, 1]:
  230. error("remote_trigg must be set to either 0 or 1.")
  231. return
  232. chips[state["selected_board"]].set_remote_trigg(status)
  233. update_state()
  234. @eel.expose
  235. def set_enab_gnd(status):
  236. status = int(status)
  237. if status not in [0, 1]:
  238. error("enab_gnd must be set to either 0 or 1.")
  239. return
  240. chips[state["selected_board"]].set_enab_gnd(status)
  241. update_state()
  242. @eel.expose
  243. def set_Vlearn(Vlearn):
  244. if Vlearn>4095 or Vlearn<0:
  245. error("Vlearn must be in the range 0-4095")
  246. return
  247. if Vlearn<2000:
  248. warning("Low values of Vlearn will heavily attenuate the output. See the response curve.")
  249. if Vlearn>3500:
  250. warning("High values of Vlearn may not leave enough room for the stabilization process and may result in the board going out of loop. See the response curve.")
  251. chips[state["selected_board"]].set_Vlearn(Vlearn)
  252. update_state()
  253. @eel.expose
  254. def set_start(start):
  255. if start>255 or start<0:
  256. error("start must be in the range 0-256")
  257. return
  258. if start>state["stop"]:
  259. error("start must be lower than stop")
  260. return
  261. if start>state["wf_len"]:
  262. error("start must be lower than the waveform length")
  263. return
  264. chips[state["selected_board"]].set_start(start)
  265. update_state()
  266. @eel.expose
  267. def set_stop(stop):
  268. if stop>255 or stop<0:
  269. error("stop must be in the range 0-256")
  270. return
  271. if stop<state["start"]:
  272. error("start must be lower than stop")
  273. return
  274. if stop>state["wf_len"]:
  275. error("stop must be lower than the waveform length")
  276. return
  277. chips[state["selected_board"]].set_stop(stop)
  278. update_state()
  279. @eel.expose
  280. def set_start_gnd(start_gnd):
  281. if start_gnd>255 or start_gnd<0:
  282. error("start_gnd must be in the range 0-256")
  283. return
  284. if start_gnd>state["stop_gnd"]:
  285. error("start_gnd must be lower than stop")
  286. return
  287. if start_gnd>state["wf_len"]:
  288. error("start_gnd must be lower than the waveform length")
  289. return
  290. chips[state["selected_board"]].set_start_gnd(start_gnd)
  291. update_state()
  292. @eel.expose
  293. def set_stop_gnd(stop_gnd):
  294. if stop_gnd>255 or stop_gnd<0:
  295. error("stop_gnd must be in the range 0-256")
  296. return
  297. if stop_gnd<state["start_gnd"]:
  298. error("start must be lower than stop")
  299. return
  300. if stop_gnd>state["wf_len"]:
  301. error("stop_gnd must be lower than the waveform length")
  302. return
  303. chips[state["selected_board"]].set_stop_gnd(stop_gnd)
  304. update_state()
  305. @eel.expose
  306. def set_wf_len(wf_len):
  307. if wf_len>255 or wf_len<0:
  308. error("wf_len must be in the range 0-256")
  309. return
  310. if wf_len<state["stop"] or wf_len<state["stop_gnd"]:
  311. error("wf_len must be higher than both stop and stop_gnd")
  312. return
  313. chips[state["selected_board"]].set_wf_len(wf_len)
  314. update_state()
  315. @eel.expose
  316. def set_N(N):
  317. N = int(N)
  318. if N > 5:
  319. warning("Note that increasing the Number of waveforms per stabilization loop decreases the speed of the stabilization. We typically just have N=1.")
  320. chips[state["selected_board"]].set_N(N)
  321. update_state()
  322. @eel.expose
  323. def set_step_max(step):
  324. if step>4095 or step<1:
  325. error("step_max must be in the range 0-1")
  326. return
  327. if step<50:
  328. warning("step_max seems low. This may limit the ability to react to fast power fluctuations.")
  329. chips[state["selected_board"]].set_step_max(step)
  330. update_state()
  331. @eel.expose
  332. def set_Gain(*params):
  333. chips[state["selected_board"]].set_Gain(*params)
  334. update_state()
  335. @eel.expose
  336. def set_auto_set_pga(status):
  337. if status not in [0, 1]:
  338. error("auto_set_pga must be set to either 0 or 1.")
  339. return
  340. chips[state["selected_board"]].set_auto_set_pga(status)
  341. update_state()
  342. @eel.expose
  343. def set_input_gain(input_gain):
  344. if input_gain not in [1, 2, 4, 8, 16, 32, 64, 128]:
  345. error("input_gain must be one of [1, 2, 4, 8, 16, 32, 64, 128]")
  346. return
  347. chips[state["selected_board"]].set_input_gain(input_gain)
  348. update_state()
  349. @eel.expose
  350. def set_offset(offset):
  351. if offset>4095 or offset<0:
  352. error("offset must be in the range 0-4095. 2000 corresponds to no offset.")
  353. return
  354. chips[state["selected_board"]].set_offset(offset)
  355. update_state()
  356. @eel.expose
  357. def set_coarse_fine_ratio(coarse_fine_ratio):
  358. if coarse_fine_ratio<10 or coarse_fine_ratio>30:
  359. error("coarse_fine_ratio should be approximately 20.")
  360. return
  361. if coarse_fine_ratio<15 or coarse_fine_ratio>25:
  362. warning("coarse_fine_ratio should be approximately 20.")
  363. chips[state["selected_board"]].set_coarse_fine_ratio(coarse_fine_ratio)
  364. update_state()
  365. # Program state
  366. state = {
  367. "n_boards": 2,
  368. "selected_board": 0,
  369. "box_address": 0x50,
  370. "mode": 0,
  371. "out_of_lock": 0,
  372. "pi_freq": 1,
  373. "board_freq": 0,
  374. "remote_trigg": 0,
  375. "enab_gnd": 1,
  376. "Vlearn": 3200,
  377. "start": 25,
  378. "stop": 100,
  379. "start_gnd": 125,
  380. "stop_gnd": 200,
  381. "wf_len": 200,
  382. "N": 1,
  383. "step_max": 200,
  384. "Gain": 1.0,
  385. "auto_set_pga": 1,
  386. "input_gain": 1,
  387. "offset": 2000,
  388. "coarse_fine_ratio": 20
  389. }
  390. def update_state():
  391. state["n_boards"] = len(chips)
  392. state["box_address"] = adresses[state["selected_board"]]
  393. chip = chips[state["selected_board"]]
  394. state["enab_gnd"] = chip.get_enab_gnd()
  395. state["mode"] = chip.get_mode()
  396. state["out_of_lock"] = chip.get_out_of_lock()
  397. state["remote_trigg"] = chip.get_remote_trigg()
  398. state["Vlearn"] = chip.get_Vlearn()
  399. state["start"] = chip.get_start()
  400. state["stop"] = chip.get_stop()
  401. state["start_gnd"] = chip.get_start_gnd()
  402. state["stop_gnd"] = chip.get_stop_gnd()
  403. state["wf_len"] = chip.get_wf_len()
  404. state["N"] = chip.get_N()
  405. state["step_max"] = chip.get_step_max()
  406. state["Gain"] = chip.get_Gain()
  407. state["auto_set_pga"] = chip.get_auto_set_pga()
  408. state["input_gain"] = chip.get_input_gain()
  409. state["offset"] = chip.get_offset()
  410. state["coarse_fine_ratio"] = chip.get_coarse_fine_ratio()
  411. for l in state:
  412. if isinstance(state[l], np.uint16) or isinstance(state[l], np.int32):
  413. state[l] = int(state[l])
  414. if isinstance(state[l], np.float32):
  415. state[l] = float(state[l])
  416. eel.renderUI(state)
  417. ###################################
  418. ## START THE GUI
  419. ###################################
  420. my_options = {
  421. 'mode': "chrome-app", #chrome-app
  422. 'host': 'localhost',
  423. 'port': 8000 + int(np.random.rand()*1000),
  424. 'size':(660, 605),
  425. #'chromeFlags': ["--start-fullscreen", "--browser-startup-dialog"]
  426. }
  427. eel.init('web')
  428. eel.start('main.html', options=my_options, block=False)
  429. # Detect all boards
  430. import os
  431. import subprocess
  432. import re
  433. chips = []
  434. adresses = []
  435. # TO DO
  436. p = subprocess.Popen(['i2cdetect', '-y','1'],stdout=subprocess.PIPE,)
  437. p.stdout.readline()
  438. for i in range(0,8):
  439. line = str(p.stdout.readline())[4:]
  440. for match in re.finditer("[0-9a-f]+", line):
  441. adresses.append(int(match.group(0), 16))
  442. chips.append(ADUCv2p1(int(match.group(0), 16),True))
  443. print('Found boards', adresses, chips)
  444. eel.renderUI(state)
  445. eel.sleep(5)
  446. update_state()
  447. eel.renderUI(state)
  448. i = 0
  449. while(True):
  450. #eel.renderUI(state) # TO DO
  451. save_waveform() # TO DO
  452. eel.sleep(1/state["pi_freq"])
  453. if(i%100==0):
  454. clean_old_files("data/waveforms/", 1000)
  455. i += 1
  456. print(state)