server.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. import time
  2. from struct import *
  3. import ctypes
  4. import array
  5. import numpy as np
  6. import matplotlib.pyplot as plt
  7. import os
  8. import eel # GUI
  9. from ADUCv2p1 import *
  10. ###################################
  11. ## PYTHON UTILITIES
  12. ###################################
  13. last_wf_number = 0
  14. last_timestamp = 0
  15. def save_waveform():
  16. global last_timestamp, last_wf_number
  17. chip = chips[state["selected_board"]]
  18. data = chip.read_data()
  19. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  20. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  21. gnd_std = np.std(data[state["start_gnd"]:state["stop_gnd"]])
  22. signal_std = np.std(data[state["start"]:state["stop"]])
  23. wf_number = chip.get_wf_cnt()
  24. timestamp = time.time()
  25. print(wf_number, timestamp, last_wf_number, last_timestamp)
  26. if(last_wf_number>0 and wf_number - last_wf_number>0):
  27. state["board_freq"] = (timestamp - last_timestamp)/(wf_number - last_wf_number)
  28. last_wf_number, last_timestamp = wf_number, timestamp
  29. tosave = [wf_number, timestamp, state["start"], state["stop"], state["start_gnd"], state["stop_gnd"], state["input_gain"], state["offset"], signal, gnd, signal_std, gnd_std, state["wf_len"]] + list(data)
  30. np.savetxt("data/waveforms/"+str(int(timestamp*100))+".csv", [tosave], delimiter=",", fmt='%10.5f')
  31. # Save more data for long term graphs
  32. tosave = [wf_number, timestamp, signal, gnd, signal-gnd, signal_std, gnd_std, chip.get_mode(), chip.get_out_of_lock(), chip.get_Vout(1), chip.get_Vout(2)]
  33. line = '\n'+','.join(map(str, tosave))
  34. with open('data/long_term.csv','a') as fd:
  35. fd.write(line)
  36. #update_state()
  37. import datetime
  38. @eel.expose
  39. def clean_old_files(path, max_Files):
  40. def sorted_ls(path):
  41. mtime = lambda f: os.stat(os.path.join(path, f)).st_mtime
  42. return list(sorted(os.listdir(path), key=mtime))
  43. del_list = sorted_ls(path)[0:(len(sorted_ls(path))-max_Files)]
  44. for dfile in del_list:
  45. os.remove(path + dfile)
  46. '''for dirpath, dirnames, filenames in os.walk("data/waveforms/"):
  47. for file in filenames:
  48. curpath = os.path.join(dirpath, file)
  49. file_modified = datetime.datetime.fromtimestamp(os.path.getmtime(curpath))
  50. if datetime.datetime.now() - file_modified > datetime.timedelta(hours=10):
  51. os.remove(curpath)'''
  52. @eel.expose
  53. def clean_long_term():
  54. with open('data/long_term.csv','w') as fd:
  55. fd.write('')
  56. @eel.expose
  57. def calibrate_gain():
  58. if(state["mode"]!=0):
  59. error("You must be in learn mode to calibrate the loop gain")
  60. return
  61. message("Calibrating...")
  62. chip = chips[state["selected_board"]]
  63. auto_set_pga = state["auto_set_pga"]
  64. chip.set_auto_set_pga(0) #Stop it while we scan
  65. measurements = []
  66. for Vfine in range(2000, 4000, 100):
  67. chip.set_Vout(2, Vfine)
  68. time.sleep(0.1)
  69. data = chip.read_data()
  70. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  71. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  72. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  73. measurements.append([chip.get_Vout(2), signal-gnd])
  74. chip.set_Vout(2, 3000)
  75. measurements = np.array(measurements)
  76. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  77. print('signal-gnd vs Vfine slope', p[0], 'intercept', p[1])
  78. chip.set_Gain(1/p[0])
  79. print('Gain has been set to 1/slope', 1/p[0])
  80. plt.scatter(measurements[:,0], measurements[:,1], label='Measurements')
  81. plt.plot(np.arange(2000, 4000, 100), np.arange(2000, 4000, 100)*p[0] + p[1], label='Linear fit')
  82. plt.legend()
  83. plt.xlabel('Fine voltage')
  84. plt.ylabel('Photodiode signal')
  85. plt.show()
  86. chip.set_auto_set_pga(auto_set_pga)
  87. update_state()
  88. @eel.expose
  89. def calibrate_coarse_fine_ratio():
  90. if(state["mode"]!=0):
  91. error("You must be in learn mode to calibrate the broad to fine ratio")
  92. return
  93. message("Calibrating...")
  94. chip = chips[state["selected_board"]]
  95. auto_set_pga = state["auto_set_pga"]
  96. chip.set_auto_set_pga(0) #Stop it while we scan
  97. # Scan Vfine
  98. measurements = []
  99. for Vfine in range(2500, 3500, 100):
  100. chip.set_Vout(2, Vfine)
  101. time.sleep(0.1)
  102. data = chip.read_data()
  103. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  104. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  105. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  106. measurements.append([chip.get_Vout(2), signal-gnd])
  107. chip.set_Vout(2, 3000)
  108. measurements = np.array(measurements)
  109. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  110. # Scan Vcoarse
  111. measurements = []
  112. low, high = state["Vlearn"]-100, state["Vlearn"]+100
  113. if(low<0):
  114. low=0
  115. if(high>4000):
  116. high=4000
  117. for Vcoarse in range(low, high, 20):
  118. chip.set_Vlearn(Vcoarse)
  119. time.sleep(0.1)
  120. data = chip.read_data()
  121. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  122. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  123. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  124. measurements.append([chip.get_Vlearn(), signal-gnd])
  125. chip.set_Vlearn(state["Vlearn"])
  126. measurements = np.array(measurements)
  127. q = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  128. # Set to ratio
  129. print('Setting coarse_fine_ratio to', q[0]/p[0])
  130. chip.set_coarse_fine_ratio(q[0]/p[0])
  131. chip.set_auto_set_pga(auto_set_pga)
  132. update_state()
  133. @eel.expose
  134. def measure_response_function():
  135. message("Measuring...")
  136. if(state["mode"]!=0):
  137. error("You must be in learn mode to measure the response function.")
  138. return
  139. chip = chips[state["selected_board"]]
  140. auto_set_pga = state["auto_set_pga"]
  141. chip.set_auto_set_pga(0) #Stop it while we scan
  142. # Scan Vcoarse
  143. measurements = []
  144. for Vcoarse in range(0, 4000, 100):
  145. chip.set_Vlearn(Vcoarse)
  146. time.sleep(0.1)
  147. data = chip.read_data()
  148. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  149. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  150. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  151. measurements.append([chip.get_Vlearn(), signal-gnd])
  152. chip.set_Vlearn(state["Vlearn"])
  153. measurements = np.array(measurements)
  154. plt.plot(measurements[:,0], measurements[:,1])
  155. plt.xlabel('Output voltage')
  156. plt.ylabel('Photodiode signal')
  157. plt.show()
  158. chip.set_auto_set_pga(auto_set_pga)
  159. update_state()
  160. @eel.expose
  161. def sdev_time():
  162. pass
  163. @eel.expose
  164. def noise_power_spectrum():
  165. pass
  166. ###################################
  167. ## EXPOSED GUI COMMUNICATION
  168. ###################################
  169. # Graphs
  170. from os import listdir
  171. @eel.expose
  172. def listFiles(path):
  173. return listdir(path)
  174. @eel.expose
  175. def loadFile(path):
  176. try:
  177. return list(np.loadtxt(path, delimiter=","))
  178. except:
  179. print('Could not load file', path)
  180. @eel.expose
  181. def loadLongTerm():
  182. try:
  183. li = list(np.loadtxt('data/long_term.csv', delimiter=","))
  184. if((li[-1][1]-li[0][1])/60/60 > 24 or len(li)>100000): # Time to clean up, delete until we have less than 90000 points and 20 hours of data
  185. with open('data/long_term.csv') as f, open("data/long_term_tmp.csv", "w") as out:
  186. for x in range(len(li)):
  187. if(len(li)-x>90000 or (li[-1][1]-li[x][1])/60/60 > 20):
  188. next(f)
  189. for line in f:
  190. out.write(line)
  191. os.remove("data/long_term.csv")
  192. os.rename("data/long_term_tmp.csv", "data/long_term.csv")
  193. return [list(l) for l in li]
  194. except:
  195. print('Couldnt load this')
  196. # Expose functions to GUI and do some parameter checking
  197. def error(txt):
  198. eel.error(txt)
  199. eel.renderUI(state)
  200. def warning(txt):
  201. eel.warning(txt)
  202. def message(txt):
  203. eel.message(txt)
  204. @eel.expose
  205. def set_selected_board(n):
  206. if n>len(chips):
  207. error("Selected board does not exist.")
  208. return;
  209. state["selected_board"] = n
  210. update_state()
  211. @eel.expose
  212. def set_pi_freq(freq):
  213. if(freq>100):
  214. error("The communication cannot be this fast. High values are likely to disturb the board.")
  215. return
  216. if(freq<0.01):
  217. error("Frequency must be at least 0.01Hz.")
  218. return
  219. if(freq>10):
  220. warning("High values are likely to disturb the board.")
  221. state["pi_freq"] = freq
  222. eel.renderUI(state)
  223. @eel.expose
  224. def set_remote_trigg(status):
  225. status = int(status)
  226. if status not in [0, 1]:
  227. error("remote_trigg must be set to either 0 or 1.")
  228. return
  229. chips[state["selected_board"]].set_remote_trigg(status)
  230. update_state()
  231. @eel.expose
  232. def set_enab_gnd(status):
  233. status = int(status)
  234. if status not in [0, 1]:
  235. error("enab_gnd must be set to either 0 or 1.")
  236. return
  237. chips[state["selected_board"]].set_enab_gnd(status)
  238. update_state()
  239. @eel.expose
  240. def set_Vlearn(Vlearn):
  241. if Vlearn>4095 or Vlearn<0:
  242. error("Vlearn must be in the range 0-4095")
  243. return
  244. if Vlearn<2000:
  245. warning("Low values of Vlearn will heavily attenuate the output. See the response curve.")
  246. if Vlearn>3500:
  247. warning("High values of Vlearn may not leave enough room for the stabilization process and may result in the board going out of loop. See the response curve.")
  248. chips[state["selected_board"]].set_Vlearn(Vlearn)
  249. update_state()
  250. @eel.expose
  251. def set_start(start):
  252. if start>255 or start<0:
  253. error("start must be in the range 0-256")
  254. return
  255. if start>state["stop"]:
  256. error("start must be lower than stop")
  257. return
  258. if start>state["wf_len"]:
  259. error("start must be lower than the waveform length")
  260. return
  261. chips[state["selected_board"]].set_start(start)
  262. update_state()
  263. @eel.expose
  264. def set_stop(stop):
  265. if stop>255 or stop<0:
  266. error("stop must be in the range 0-256")
  267. return
  268. if stop<state["start"]:
  269. error("start must be lower than stop")
  270. return
  271. if stop>state["wf_len"]:
  272. error("stop must be lower than the waveform length")
  273. return
  274. chips[state["selected_board"]].set_stop(stop)
  275. update_state()
  276. @eel.expose
  277. def set_start_gnd(start_gnd):
  278. if start_gnd>255 or start_gnd<0:
  279. error("start_gnd must be in the range 0-256")
  280. return
  281. if start_gnd>state["stop_gnd"]:
  282. error("start_gnd must be lower than stop")
  283. return
  284. if start_gnd>state["wf_len"]:
  285. error("start_gnd must be lower than the waveform length")
  286. return
  287. chips[state["selected_board"]].set_start_gnd(start_gnd)
  288. update_state()
  289. @eel.expose
  290. def set_stop_gnd(stop_gnd):
  291. if stop_gnd>255 or stop_gnd<0:
  292. error("stop_gnd must be in the range 0-256")
  293. return
  294. if stop_gnd<state["start_gnd"]:
  295. error("start must be lower than stop")
  296. return
  297. if stop_gnd>state["wf_len"]:
  298. error("stop_gnd must be lower than the waveform length")
  299. return
  300. chips[state["selected_board"]].set_stop_gnd(stop_gnd)
  301. update_state()
  302. @eel.expose
  303. def set_wf_len(wf_len):
  304. if wf_len>255 or wf_len<0:
  305. error("wf_len must be in the range 0-256")
  306. return
  307. if wf_len<state["stop"] or wf_len<state["stop_gnd"]:
  308. error("wf_len must be higher than both stop and stop_gnd")
  309. return
  310. chips[state["selected_board"]].set_wf_len(wf_len)
  311. update_state()
  312. @eel.expose
  313. def set_N(N):
  314. N = int(N)
  315. if N > 5:
  316. warning("Note that increasing the Number of waveforms per stabilization loop decreases the speed of the stabilization. We typically just have N=1.")
  317. chips[state["selected_board"]].set_N(N)
  318. update_state()
  319. @eel.expose
  320. def set_step_max(step):
  321. if step>4095 or step<1:
  322. error("step_max must be in the range 0-1")
  323. return
  324. if step<50:
  325. warning("step_max seems low. This may limit the ability to react to fast power fluctuations.")
  326. chips[state["selected_board"]].set_step_max(step)
  327. update_state()
  328. @eel.expose
  329. def set_Gain(*params):
  330. chips[state["selected_board"]].set_Gain(*params)
  331. update_state()
  332. @eel.expose
  333. def set_auto_set_pga(status):
  334. if status not in [0, 1]:
  335. error("auto_set_pga must be set to either 0 or 1.")
  336. return
  337. chips[state["selected_board"]].set_auto_set_pga(status)
  338. update_state()
  339. @eel.expose
  340. def set_input_gain(input_gain):
  341. if input_gain not in [1, 2, 4, 8, 16, 32, 64, 128]:
  342. error("input_gain must be one of [1, 2, 4, 8, 16, 32, 64, 128]")
  343. return
  344. chips[state["selected_board"]].set_input_gain(input_gain)
  345. update_state()
  346. @eel.expose
  347. def set_offset(offset):
  348. if offset>4095 or offset<0:
  349. error("offset must be in the range 0-4095. 2000 corresponds to no offset.")
  350. return
  351. chips[state["selected_board"]].set_offset(offset)
  352. update_state()
  353. @eel.expose
  354. def set_coarse_fine_ratio(coarse_fine_ratio):
  355. if coarse_fine_ratio<10 or coarse_fine_ratio>30:
  356. error("coarse_fine_ratio should be approximately 20.")
  357. return
  358. if coarse_fine_ratio<15 or coarse_fine_ratio>25:
  359. warning("coarse_fine_ratio should be approximately 20.")
  360. chips[state["selected_board"]].set_coarse_fine_ratio(coarse_fine_ratio)
  361. update_state()
  362. # Program state
  363. state = {
  364. "n_boards": 2,
  365. "selected_board": 0,
  366. "box_address": 0x50,
  367. "mode": 0,
  368. "out_of_lock": 0,
  369. "pi_freq": 1,
  370. "board_freq": 0,
  371. "remote_trigg": 0,
  372. "enab_gnd": 1,
  373. "Vlearn": 3200,
  374. "start": 25,
  375. "stop": 100,
  376. "start_gnd": 125,
  377. "stop_gnd": 200,
  378. "wf_len": 200,
  379. "N": 1,
  380. "step_max": 200,
  381. "Gain": 1.0,
  382. "auto_set_pga": 1,
  383. "input_gain": 1,
  384. "offset": 2000,
  385. "coarse_fine_ratio": 20
  386. }
  387. def update_state():
  388. state["n_boards"] = len(chips)
  389. state["box_address"] = adresses[state["selected_board"]]
  390. chip = chips[state["selected_board"]]
  391. state["enab_gnd"] = chip.get_enab_gnd()
  392. state["mode"] = chip.get_mode()
  393. state["out_of_lock"] = chip.get_out_of_lock()
  394. state["remote_trigg"] = chip.get_remote_trigg()
  395. state["Vlearn"] = chip.get_Vlearn()
  396. state["start"] = chip.get_start()
  397. state["stop"] = chip.get_stop()
  398. state["start_gnd"] = chip.get_start_gnd()
  399. state["stop_gnd"] = chip.get_stop_gnd()
  400. state["wf_len"] = chip.get_wf_len()
  401. state["N"] = chip.get_N()
  402. state["step_max"] = chip.get_step_max()
  403. state["Gain"] = chip.get_Gain()
  404. state["auto_set_pga"] = chip.get_auto_set_pga()
  405. state["input_gain"] = chip.get_input_gain()
  406. state["offset"] = chip.get_offset()
  407. state["coarse_fine_ratio"] = chip.get_coarse_fine_ratio()
  408. for l in state:
  409. if isinstance(state[l], np.uint16) or isinstance(state[l], np.int32):
  410. state[l] = int(state[l])
  411. if isinstance(state[l], np.float32):
  412. state[l] = float(state[l])
  413. eel.renderUI(state)
  414. ###################################
  415. ## START THE GUI
  416. ###################################
  417. my_options = {
  418. 'mode': "chrome-app", #chrome-app
  419. 'host': 'localhost',
  420. 'port': 8000 + int(np.random.rand()*1000),
  421. 'size':(660, 605),
  422. #'chromeFlags': ["--start-fullscreen", "--browser-startup-dialog"]
  423. }
  424. eel.init('web')
  425. eel.start('main.html', options=my_options, block=False)
  426. # Detect all boards
  427. import os
  428. import subprocess
  429. import re
  430. chips = []
  431. adresses = []
  432. # TO DO
  433. p = subprocess.Popen(['i2cdetect', '-y','1'],stdout=subprocess.PIPE,)
  434. p.stdout.readline()
  435. for i in range(0,8):
  436. line = str(p.stdout.readline())[4:]
  437. for match in re.finditer("[0-9a-f]+", line):
  438. adresses.append(int(match.group(0), 16))
  439. chips.append(ADUCv2p1(int(match.group(0), 16),True))
  440. print('Found boards', adresses, chips)
  441. eel.renderUI(state)
  442. eel.sleep(5)
  443. update_state()
  444. eel.renderUI(state)
  445. i = 0
  446. while(True):
  447. #eel.renderUI(state) # TO DO
  448. save_waveform() # TO DO
  449. eel.sleep(1/state["pi_freq"])
  450. if(i%100==0):
  451. clean_old_files("data/waveforms/", 1000)
  452. i += 1
  453. print(state)