server.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. import time
  2. from struct import *
  3. import ctypes
  4. import array
  5. import numpy as np
  6. import matplotlib.pyplot as plt
  7. import os
  8. import eel # GUI
  9. from ADUCv2p1 import *
  10. ###################################
  11. ## PYTHON UTILITIES
  12. ###################################
  13. last_wf_number = 0
  14. last_timestamp = 0
  15. def save_waveform():
  16. global last_timestamp, last_wf_number
  17. chip = chips[state["selected_board"]]
  18. data = chip.read_data()
  19. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  20. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  21. gnd_std = np.std(data[state["start_gnd"]:state["stop_gnd"]])
  22. signal_std = np.std(data[state["start"]:state["stop"]])
  23. wf_number = chip.get_wf_cnt()
  24. timestamp = time.time()
  25. if(last_wf_number>0 and wf_number - last_wf_number>0):
  26. state["board_freq"] = (timestamp - last_timestamp)/(wf_number - last_wf_number)
  27. last_wf_number, last_timestamp = wf_number, timestamp
  28. tosave = [wf_number, timestamp, state["start"], state["stop"], state["start_gnd"], state["stop_gnd"], state["input_gain"], state["offset"], signal, gnd, signal_std, gnd_std, state["wf_len"]] + list(data)
  29. np.savetxt("data/waveforms/"+str(int(timestamp*100))+".csv", [tosave], delimiter=",", fmt='%10.5f')
  30. # Save more data for long term graphs
  31. tosave = [wf_number, timestamp, signal, gnd, signal-gnd, signal_std, gnd_std, chip.get_mode(), chip.get_out_of_lock(), chip.get_Vout(1), chip.get_Vout(2)]
  32. line = '\n'+','.join(map(str, tosave))
  33. with open('data/long_term.csv','a') as fd:
  34. fd.write(line)
  35. #update_state()
  36. import datetime
  37. def clean_old_files(path, max_Files):
  38. def sorted_ls(path):
  39. mtime = lambda f: os.stat(os.path.join(path, f)).st_mtime
  40. return list(sorted(os.listdir(path), key=mtime))
  41. del_list = sorted_ls(path)[0:(len(sorted_ls(path))-max_Files)]
  42. for dfile in del_list:
  43. os.remove(path + dfile)
  44. '''for dirpath, dirnames, filenames in os.walk("data/waveforms/"):
  45. for file in filenames:
  46. curpath = os.path.join(dirpath, file)
  47. file_modified = datetime.datetime.fromtimestamp(os.path.getmtime(curpath))
  48. if datetime.datetime.now() - file_modified > datetime.timedelta(hours=10):
  49. os.remove(curpath)'''
  50. @eel.expose
  51. def calibrate_gain():
  52. if(state["mode"]!=0):
  53. error("You must be in learn mode to calibrate the loop gain")
  54. return
  55. chip = chips[state["selected_board"]]
  56. auto_set_pga = state["auto_set_pga"]
  57. chip.set_auto_set_pga(0) #Stop it while we scan
  58. measurements = []
  59. for Vfine in range(2000, 4000, 100):
  60. chip.set_Vout(2, Vfine)
  61. time.sleep(0.1)
  62. data = chip.read_data()
  63. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  64. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  65. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  66. measurements.append([chip.get_Vout(2), signal-gnd])
  67. chip.set_Vout(2, 3000)
  68. measurements = np.array(measurements)
  69. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  70. print('signal-gnd vs Vfine slope', p[0], 'intercept', p[1])
  71. chip.set_Gain(1/p[0])
  72. print('Gain has been set to 1/slope', 1/p[0])
  73. plt.scatter(measurements[:,0], measurements[:,1], label='Measurements')
  74. plt.plot(np.arange(2000, 4000, 100), np.arange(2000, 4000, 100)*p[0] + p[1], label='Linear fit')
  75. plt.legend()
  76. plt.xlabel('Fine voltage')
  77. plt.ylabel('Photodiode signal')
  78. plt.show()
  79. chip.set_auto_set_pga(auto_set_pga)
  80. update_state()
  81. @eel.expose
  82. def calibrate_coarse_fine_ratio():
  83. if(state["mode"]!=0):
  84. error("You must be in learn mode to calibrate the broad to fine ratio")
  85. return
  86. chip = chips[state["selected_board"]]
  87. auto_set_pga = state["auto_set_pga"]
  88. chip.set_auto_set_pga(0) #Stop it while we scan
  89. # Scan Vfine
  90. measurements = []
  91. for Vfine in range(2500, 3500, 100):
  92. chip.set_Vout(2, Vfine)
  93. time.sleep(0.1)
  94. data = chip.read_data()
  95. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  96. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  97. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  98. measurements.append([chip.get_Vout(2), signal-gnd])
  99. chip.set_Vout(2, 3000)
  100. measurements = np.array(measurements)
  101. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  102. # Scan Vcoarse
  103. measurements = []
  104. low, high = state["Vlearn"]-100, state["Vlearn"]+100
  105. if(low<0):
  106. low=0
  107. if(high>4000):
  108. high=4000
  109. for Vcoarse in range(low, high, 20):
  110. chip.set_Vlearn(Vcoarse)
  111. time.sleep(0.1)
  112. data = chip.read_data()
  113. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  114. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  115. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  116. measurements.append([chip.get_Vlearn(), signal-gnd])
  117. chip.set_Vlearn(state["Vlearn"])
  118. measurements = np.array(measurements)
  119. q = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  120. # Set to ratio
  121. print('Setting coarse_fine_ratio to', q[0]/p[0])
  122. chip.set_coarse_fine_ratio(q[0]/p[0])
  123. chip.set_auto_set_pga(auto_set_pga)
  124. update_state()
  125. @eel.expose
  126. def measure_response_function():
  127. if(state["mode"]!=0):
  128. error("You must be in learn mode to measure the response function.")
  129. return
  130. chip = chips[state["selected_board"]]
  131. auto_set_pga = state["auto_set_pga"]
  132. chip.set_auto_set_pga(0) #Stop it while we scan
  133. # Scan Vcoarse
  134. measurements = []
  135. for Vcoarse in range(0, 4000, 100):
  136. chip.set_Vlearn(Vcoarse)
  137. time.sleep(0.1)
  138. data = chip.read_data()
  139. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  140. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  141. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  142. measurements.append([chip.get_Vlearn(), signal-gnd])
  143. chip.set_Vlearn(state["Vlearn"])
  144. measurements = np.array(measurements)
  145. plt.plot(measurements[:,0], measurements[:,1])
  146. plt.xlabel('Output voltage')
  147. plt.ylabel('Photodiode signal')
  148. plt.show()
  149. chip.set_auto_set_pga(auto_set_pga)
  150. update_state()
  151. @eel.expose
  152. def sdev_time():
  153. pass
  154. @eel.expose
  155. def noise_power_spectrum():
  156. pass
  157. ###################################
  158. ## EXPOSED GUI COMMUNICATION
  159. ###################################
  160. # Graphs
  161. from os import listdir
  162. @eel.expose
  163. def listFiles(path):
  164. return listdir(path)
  165. @eel.expose
  166. def loadFile(path):
  167. try:
  168. return list(np.loadtxt(path, delimiter=","))
  169. except:
  170. print('Could not load file', path)
  171. @eel.expose
  172. def loadLongTerm():
  173. try:
  174. li = list(np.loadtxt('data/long_term.csv', delimiter=","))
  175. if((li[-1][1]-li[0][1])/60/60 > 24 or len(li)>100000): # Time to clean up, delete until we have less than 90000 points and 20 hours of data
  176. with open('data/long_term.csv') as f, open("data/long_term_tmp.csv", "w") as out:
  177. for x in range(len(li)):
  178. if(len(li)-x>90000 or (li[-1][1]-li[x][1])/60/60 > 20):
  179. next(f)
  180. for line in f:
  181. out.write(line)
  182. os.remove("data/long_term.csv")
  183. os.rename("data/long_term_tmp.csv", "data/long_term.csv")
  184. return [list(l) for l in li]
  185. except:
  186. print('Couldnt load this')
  187. # Expose functions to GUI and do some parameter checking
  188. def error(txt):
  189. eel.error(txt)
  190. eel.renderUI(state)
  191. def warning(txt):
  192. eel.warning(txt)
  193. @eel.expose
  194. def set_selected_board(n):
  195. if n>len(chips):
  196. error("Selected board does not exist.")
  197. return;
  198. state["selected_board"] = n
  199. update_state()
  200. @eel.expose
  201. def set_pi_freq(freq):
  202. if(freq>100):
  203. error("The communication cannot be this fast. High values are likely to disturb the board.")
  204. return
  205. if(freq<0.2):
  206. error("Frequency must be at least 0.2Hz.")
  207. return
  208. if(freq>10):
  209. warning("High values are likely to disturb the board.")
  210. state["pi_freq"] = freq
  211. eel.renderUI(state)
  212. @eel.expose
  213. def set_remote_trigg(status):
  214. status = int(status)
  215. if status not in [0, 1]:
  216. error("remote_trigg must be set to either 0 or 1.")
  217. return
  218. chips[state["selected_board"]].set_remote_trigg(status)
  219. update_state()
  220. @eel.expose
  221. def set_enab_gnd(status):
  222. status = int(status)
  223. if status not in [0, 1]:
  224. error("enab_gnd must be set to either 0 or 1.")
  225. return
  226. chips[state["selected_board"]].set_enab_gnd(status)
  227. update_state()
  228. @eel.expose
  229. def set_Vlearn(Vlearn):
  230. if Vlearn>4095 or Vlearn<0:
  231. error("Vlearn must be in the range 0-4095")
  232. return
  233. if Vlearn<2000:
  234. warning("Low values of Vlearn will heavily attenuate the output. See the response curve.")
  235. if Vlearn>3500:
  236. warning("High values of Vlearn may not leave enough room for the stabilization process and may result in the board going out of loop. See the response curve.")
  237. chips[state["selected_board"]].set_Vlearn(Vlearn)
  238. update_state()
  239. @eel.expose
  240. def set_start(start):
  241. if start>255 or start<0:
  242. error("start must be in the range 0-256")
  243. return
  244. if start>state["stop"]:
  245. error("start must be lower than stop")
  246. return
  247. if start>state["wf_len"]:
  248. error("start must be lower than the waveform length")
  249. return
  250. chips[state["selected_board"]].set_start(start)
  251. update_state()
  252. @eel.expose
  253. def set_stop(stop):
  254. if stop>255 or stop<0:
  255. error("stop must be in the range 0-256")
  256. return
  257. if stop<state["start"]:
  258. error("start must be lower than stop")
  259. return
  260. if stop>state["wf_len"]:
  261. error("stop must be lower than the waveform length")
  262. return
  263. chips[state["selected_board"]].set_stop(stop)
  264. update_state()
  265. @eel.expose
  266. def set_start_gnd(start_gnd):
  267. if start_gnd>255 or start_gnd<0:
  268. error("start_gnd must be in the range 0-256")
  269. return
  270. if start_gnd>state["stop_gnd"]:
  271. error("start_gnd must be lower than stop")
  272. return
  273. if start_gnd>state["wf_len"]:
  274. error("start_gnd must be lower than the waveform length")
  275. return
  276. chips[state["selected_board"]].set_start_gnd(start_gnd)
  277. update_state()
  278. @eel.expose
  279. def set_stop_gnd(stop_gnd):
  280. if stop_gnd>255 or stop_gnd<0:
  281. error("stop_gnd must be in the range 0-256")
  282. return
  283. if stop_gnd<state["start_gnd"]:
  284. error("start must be lower than stop")
  285. return
  286. if stop_gnd>state["wf_len"]:
  287. error("stop_gnd must be lower than the waveform length")
  288. return
  289. chips[state["selected_board"]].set_stop_gnd(stop_gnd)
  290. update_state()
  291. @eel.expose
  292. def set_wf_len(wf_len):
  293. if wf_len>255 or wf_len<0:
  294. error("wf_len must be in the range 0-256")
  295. return
  296. if wf_len<state["stop"] or wf_len<state["stop_gnd"]:
  297. error("wf_len must be higher than both stop and stop_gnd")
  298. return
  299. chips[state["selected_board"]].set_wf_len(wf_len)
  300. update_state()
  301. @eel.expose
  302. def set_N(N):
  303. N = int(N)
  304. if N > 5:
  305. warning("Note that increasing the Number of waveforms per stabilization loop decreases the speed of the stabilization. We typically just have N=1.")
  306. chips[state["selected_board"]].set_N(N)
  307. update_state()
  308. @eel.expose
  309. def set_step_max(step):
  310. if step>4095 or step<1:
  311. error("step_max must be in the range 0-1")
  312. return
  313. if step<50:
  314. warning("step_max seems low. This may limit the ability to react to fast power fluctuations.")
  315. chips[state["selected_board"]].set_step_max(step)
  316. update_state()
  317. @eel.expose
  318. def set_Gain(*params):
  319. chips[state["selected_board"]].set_Gain(*params)
  320. update_state()
  321. @eel.expose
  322. def set_auto_set_pga(status):
  323. if status not in [0, 1]:
  324. error("auto_set_pga must be set to either 0 or 1.")
  325. return
  326. chips[state["selected_board"]].set_auto_set_pga(status)
  327. update_state()
  328. @eel.expose
  329. def set_input_gain(input_gain):
  330. if input_gain not in [1, 2, 4, 8, 16, 32, 64, 128]:
  331. error("input_gain must be one of [1, 2, 4, 8, 16, 32, 64, 128]")
  332. return
  333. chips[state["selected_board"]].set_input_gain(input_gain)
  334. update_state()
  335. @eel.expose
  336. def set_offset(offset):
  337. if offset>4095 or offset<0:
  338. error("offset must be in the range 0-4095. 2000 corresponds to no offset.")
  339. return
  340. chips[state["selected_board"]].set_offset(offset)
  341. update_state()
  342. @eel.expose
  343. def set_coarse_fine_ratio(coarse_fine_ratio):
  344. if coarse_fine_ratio<10 or coarse_fine_ratio>30:
  345. error("coarse_fine_ratio should be approximately 20.")
  346. return
  347. if coarse_fine_ratio<15 or coarse_fine_ratio>25:
  348. warning("coarse_fine_ratio should be approximately 20.")
  349. chips[state["selected_board"]].set_coarse_fine_ratio(coarse_fine_ratio)
  350. update_state()
  351. # Program state
  352. state = {
  353. "n_boards": 2,
  354. "selected_board": 0,
  355. "box_address": 0x50,
  356. "mode": 0,
  357. "out_of_lock": 0,
  358. "pi_freq": 1,
  359. "board_freq": 0,
  360. "remote_trigg": 0,
  361. "enab_gnd": 1,
  362. "Vlearn": 3200,
  363. "start": 25,
  364. "stop": 100,
  365. "start_gnd": 125,
  366. "stop_gnd": 200,
  367. "wf_len": 200,
  368. "N": 1,
  369. "step_max": 200,
  370. "Gain": 1.0,
  371. "auto_set_pga": 1,
  372. "input_gain": 1,
  373. "offset": 2000,
  374. "coarse_fine_ratio": 20
  375. }
  376. def update_state():
  377. state["n_boards"] = len(chips)
  378. state["box_address"] = adresses[state["selected_board"]]
  379. chip = chips[state["selected_board"]]
  380. state["enab_gnd"] = chip.get_enab_gnd()
  381. state["mode"] = chip.get_mode()
  382. state["out_of_lock"] = chip.get_out_of_lock()
  383. state["remote_trigg"] = chip.get_remote_trigg()
  384. state["Vlearn"] = chip.get_Vlearn()
  385. state["start"] = chip.get_start()
  386. state["stop"] = chip.get_stop()
  387. state["start_gnd"] = chip.get_start_gnd()
  388. state["stop_gnd"] = chip.get_stop_gnd()
  389. state["wf_len"] = chip.get_wf_len()
  390. state["N"] = chip.get_N()
  391. state["step_max"] = chip.get_step_max()
  392. state["Gain"] = chip.get_Gain()
  393. state["auto_set_pga"] = chip.get_auto_set_pga()
  394. state["input_gain"] = chip.get_input_gain()
  395. state["offset"] = chip.get_offset()
  396. state["coarse_fine_ratio"] = chip.get_coarse_fine_ratio()
  397. for l in state:
  398. if isinstance(state[l], np.uint16) or isinstance(state[l], np.int32):
  399. state[l] = int(state[l])
  400. if isinstance(state[l], np.float32):
  401. state[l] = float(state[l])
  402. eel.renderUI(state)
  403. ###################################
  404. ## START THE GUI
  405. ###################################
  406. my_options = {
  407. 'mode': "chrome-app", #chrome-app
  408. 'host': 'localhost',
  409. 'port': 8000 + int(np.random.rand()*1000),
  410. 'size':(660, 605),
  411. #'chromeFlags': ["--start-fullscreen", "--browser-startup-dialog"]
  412. }
  413. eel.init('web')
  414. eel.start('main.html', options=my_options, block=False)
  415. # Detect all boards
  416. import os
  417. import subprocess
  418. import re
  419. chips = []
  420. adresses = []
  421. # TO DO
  422. p = subprocess.Popen(['i2cdetect', '-y','1'],stdout=subprocess.PIPE,)
  423. p.stdout.readline()
  424. for i in range(0,8):
  425. line = str(p.stdout.readline())[4:]
  426. for match in re.finditer("[0-9a-f]+", line):
  427. adresses.append(int(match.group(0), 16))
  428. chips.append(ADUCv2p1(int(match.group(0), 16),True))
  429. print('Found boards', adresses, chips)
  430. eel.renderUI(state)
  431. eel.sleep(5)
  432. update_state()
  433. eel.renderUI(state)
  434. i = 0
  435. while(True):
  436. #eel.renderUI(state) # TO DO
  437. save_waveform() # TO DO
  438. eel.sleep(1/state["pi_freq"])
  439. if(i%100==0):
  440. clean_old_files("data/waveforms/", 1000)
  441. i += 1
  442. print(state)