1
0

server.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. import time
  2. from struct import *
  3. import ctypes
  4. import array
  5. import numpy as np
  6. import matplotlib.pyplot as plt
  7. import os
  8. import eel # GUI
  9. from ADUCv2p1 import *
  10. ###################################
  11. ## PYTHON UTILITIES
  12. ###################################
  13. last_wf_number = 0
  14. last_timestamp = 0
  15. def save_waveform():
  16. global last_timestamp, last_wf_number
  17. chip = chips[state["selected_board"]]
  18. data = chip.read_data()
  19. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  20. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  21. gnd_std = np.std(data[state["start_gnd"]:state["stop_gnd"]])
  22. signal_std = np.std(data[state["start"]:state["stop"]])
  23. wf_number = chip.get_wf_cnt()
  24. timestamp = time.time()
  25. if(last_wf_number>0 and wf_number - last_wf_number>0):
  26. state["board_freq"] = (timestamp - last_timestamp)/(wf_number - last_wf_number)
  27. last_wf_number, last_timestamp = wf_number, timestamp
  28. tosave = [wf_number, timestamp, state["start"], state["stop"], state["start_gnd"], state["stop_gnd"], state["input_gain"], state["offset"], signal, gnd, signal_std, gnd_std, state["wf_len"]] + list(data)
  29. np.savetxt("data/waveforms/"+str(int(timestamp*100))+".csv", [tosave], delimiter=",", fmt='%10.5f')
  30. # Save more data for long term graphs
  31. tosave = [wf_number, timestamp, signal, gnd, signal-gnd, signal_std, gnd_std, chip.get_mode(), chip.get_out_of_lock(), chip.get_Vout(1), chip.get_Vout(2)]
  32. line = '\n'+','.join(map(str, tosave))
  33. with open('data/long_term.csv','a') as fd:
  34. fd.write(line)
  35. #update_state()
  36. import datetime
  37. @eel.expose
  38. def clean_old_files(path, max_Files):
  39. def sorted_ls(path):
  40. mtime = lambda f: os.stat(os.path.join(path, f)).st_mtime
  41. return list(sorted(os.listdir(path), key=mtime))
  42. del_list = sorted_ls(path)[0:(len(sorted_ls(path))-max_Files)]
  43. for dfile in del_list:
  44. os.remove(path + dfile)
  45. '''for dirpath, dirnames, filenames in os.walk("data/waveforms/"):
  46. for file in filenames:
  47. curpath = os.path.join(dirpath, file)
  48. file_modified = datetime.datetime.fromtimestamp(os.path.getmtime(curpath))
  49. if datetime.datetime.now() - file_modified > datetime.timedelta(hours=10):
  50. os.remove(curpath)'''
  51. @eel.expose
  52. def clean_long_term():
  53. with open('data/long_term.csv','w') as fd:
  54. fd.write('')
  55. @eel.expose
  56. def calibrate_gain():
  57. if(state["mode"]!=0):
  58. error("You must be in learn mode to calibrate the loop gain")
  59. return
  60. message("Calibrating...")
  61. chip = chips[state["selected_board"]]
  62. auto_set_pga = state["auto_set_pga"]
  63. chip.set_auto_set_pga(0) #Stop it while we scan
  64. measurements = []
  65. for Vfine in range(2000, 4000, 100):
  66. chip.set_Vout(2, Vfine)
  67. time.sleep(0.1)
  68. data = chip.read_data()
  69. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  70. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  71. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  72. measurements.append([chip.get_Vout(2), signal-gnd])
  73. chip.set_Vout(2, 3000)
  74. measurements = np.array(measurements)
  75. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  76. print('signal-gnd vs Vfine slope', p[0], 'intercept', p[1])
  77. chip.set_Gain(1/p[0])
  78. print('Gain has been set to 1/slope', 1/p[0])
  79. plt.scatter(measurements[:,0], measurements[:,1], label='Measurements')
  80. plt.plot(np.arange(2000, 4000, 100), np.arange(2000, 4000, 100)*p[0] + p[1], label='Linear fit')
  81. plt.legend()
  82. plt.xlabel('Fine voltage')
  83. plt.ylabel('Photodiode signal')
  84. plt.show()
  85. chip.set_auto_set_pga(auto_set_pga)
  86. update_state()
  87. @eel.expose
  88. def calibrate_coarse_fine_ratio():
  89. if(state["mode"]!=0):
  90. error("You must be in learn mode to calibrate the broad to fine ratio")
  91. return
  92. message("Calibrating...")
  93. chip = chips[state["selected_board"]]
  94. auto_set_pga = state["auto_set_pga"]
  95. chip.set_auto_set_pga(0) #Stop it while we scan
  96. # Scan Vfine
  97. measurements = []
  98. for Vfine in range(2500, 3500, 100):
  99. chip.set_Vout(2, Vfine)
  100. time.sleep(0.1)
  101. data = chip.read_data()
  102. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  103. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  104. print('Vfine', chip.get_Vout(2), 'signal', signal-gnd)
  105. measurements.append([chip.get_Vout(2), signal-gnd])
  106. chip.set_Vout(2, 3000)
  107. measurements = np.array(measurements)
  108. p = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  109. # Scan Vcoarse
  110. measurements = []
  111. low, high = state["Vlearn"]-100, state["Vlearn"]+100
  112. if(low<0):
  113. low=0
  114. if(high>4000):
  115. high=4000
  116. for Vcoarse in range(low, high, 20):
  117. chip.set_Vlearn(Vcoarse)
  118. time.sleep(0.1)
  119. data = chip.read_data()
  120. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  121. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  122. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  123. measurements.append([chip.get_Vlearn(), signal-gnd])
  124. chip.set_Vlearn(state["Vlearn"])
  125. measurements = np.array(measurements)
  126. q = np.polyfit(measurements[:,0], measurements[:,1], deg=1)
  127. # Set to ratio
  128. print('Setting coarse_fine_ratio to', q[0]/p[0])
  129. chip.set_coarse_fine_ratio(q[0]/p[0])
  130. chip.set_auto_set_pga(auto_set_pga)
  131. update_state()
  132. @eel.expose
  133. def measure_response_function():
  134. message("Measuring...")
  135. if(state["mode"]!=0):
  136. error("You must be in learn mode to measure the response function.")
  137. return
  138. chip = chips[state["selected_board"]]
  139. auto_set_pga = state["auto_set_pga"]
  140. chip.set_auto_set_pga(0) #Stop it while we scan
  141. # Scan Vcoarse
  142. measurements = []
  143. for Vcoarse in range(0, 4000, 100):
  144. chip.set_Vlearn(Vcoarse)
  145. time.sleep(0.1)
  146. data = chip.read_data()
  147. gnd = sum(data[state["start_gnd"]:state["stop_gnd"]])/(state["stop_gnd"]-state["start_gnd"])
  148. signal = sum(data[state["start"]:state["stop"]])/(state["stop"]-state["start"])
  149. print('Vcoarse', chip.get_Vlearn(), 'signal', signal-gnd)
  150. measurements.append([chip.get_Vlearn(), signal-gnd])
  151. chip.set_Vlearn(state["Vlearn"])
  152. measurements = np.array(measurements)
  153. plt.plot(measurements[:,0], measurements[:,1])
  154. plt.xlabel('Output voltage')
  155. plt.ylabel('Photodiode signal')
  156. plt.show()
  157. chip.set_auto_set_pga(auto_set_pga)
  158. update_state()
  159. @eel.expose
  160. def sdev_time():
  161. pass
  162. @eel.expose
  163. def noise_power_spectrum():
  164. pass
  165. ###################################
  166. ## EXPOSED GUI COMMUNICATION
  167. ###################################
  168. # Graphs
  169. from os import listdir
  170. @eel.expose
  171. def listFiles(path):
  172. return listdir(path)
  173. @eel.expose
  174. def loadFile(path):
  175. try:
  176. return list(np.loadtxt(path, delimiter=","))
  177. except:
  178. print('Could not load file', path)
  179. @eel.expose
  180. def loadLongTerm():
  181. try:
  182. li = list(np.loadtxt('data/long_term.csv', delimiter=","))
  183. if((li[-1][1]-li[0][1])/60/60 > 24 or len(li)>100000): # Time to clean up, delete until we have less than 90000 points and 20 hours of data
  184. with open('data/long_term.csv') as f, open("data/long_term_tmp.csv", "w") as out:
  185. for x in range(len(li)):
  186. if(len(li)-x>90000 or (li[-1][1]-li[x][1])/60/60 > 20):
  187. next(f)
  188. for line in f:
  189. out.write(line)
  190. os.remove("data/long_term.csv")
  191. os.rename("data/long_term_tmp.csv", "data/long_term.csv")
  192. return [list(l) for l in li]
  193. except:
  194. print('Couldnt load this')
  195. # Expose functions to GUI and do some parameter checking
  196. def error(txt):
  197. eel.error(txt)
  198. eel.renderUI(state)
  199. def warning(txt):
  200. eel.warning(txt)
  201. def message(txt):
  202. eel.message(txt)
  203. @eel.expose
  204. def set_selected_board(n):
  205. if n>len(chips):
  206. error("Selected board does not exist.")
  207. return;
  208. state["selected_board"] = n
  209. update_state()
  210. @eel.expose
  211. def set_pi_freq(freq):
  212. if(freq>100):
  213. error("The communication cannot be this fast. High values are likely to disturb the board.")
  214. return
  215. if(freq<0.01):
  216. error("Frequency must be at least 0.01Hz.")
  217. return
  218. if(freq>10):
  219. warning("High values are likely to disturb the board.")
  220. state["pi_freq"] = freq
  221. eel.renderUI(state)
  222. @eel.expose
  223. def set_remote_trigg(status):
  224. status = int(status)
  225. if status not in [0, 1]:
  226. error("remote_trigg must be set to either 0 or 1.")
  227. return
  228. chips[state["selected_board"]].set_remote_trigg(status)
  229. update_state()
  230. @eel.expose
  231. def set_enab_gnd(status):
  232. status = int(status)
  233. if status not in [0, 1]:
  234. error("enab_gnd must be set to either 0 or 1.")
  235. return
  236. chips[state["selected_board"]].set_enab_gnd(status)
  237. update_state()
  238. @eel.expose
  239. def set_Vlearn(Vlearn):
  240. if Vlearn>4095 or Vlearn<0:
  241. error("Vlearn must be in the range 0-4095")
  242. return
  243. if Vlearn<2000:
  244. warning("Low values of Vlearn will heavily attenuate the output. See the response curve.")
  245. if Vlearn>3500:
  246. warning("High values of Vlearn may not leave enough room for the stabilization process and may result in the board going out of loop. See the response curve.")
  247. chips[state["selected_board"]].set_Vlearn(Vlearn)
  248. update_state()
  249. @eel.expose
  250. def set_start(start):
  251. if start>255 or start<0:
  252. error("start must be in the range 0-256")
  253. return
  254. if start>state["stop"]:
  255. error("start must be lower than stop")
  256. return
  257. if start>state["wf_len"]:
  258. error("start must be lower than the waveform length")
  259. return
  260. chips[state["selected_board"]].set_start(start)
  261. update_state()
  262. @eel.expose
  263. def set_stop(stop):
  264. if stop>255 or stop<0:
  265. error("stop must be in the range 0-256")
  266. return
  267. if stop<state["start"]:
  268. error("start must be lower than stop")
  269. return
  270. if stop>state["wf_len"]:
  271. error("stop must be lower than the waveform length")
  272. return
  273. chips[state["selected_board"]].set_stop(stop)
  274. update_state()
  275. @eel.expose
  276. def set_start_gnd(start_gnd):
  277. if start_gnd>255 or start_gnd<0:
  278. error("start_gnd must be in the range 0-256")
  279. return
  280. if start_gnd>state["stop_gnd"]:
  281. error("start_gnd must be lower than stop")
  282. return
  283. if start_gnd>state["wf_len"]:
  284. error("start_gnd must be lower than the waveform length")
  285. return
  286. chips[state["selected_board"]].set_start_gnd(start_gnd)
  287. update_state()
  288. @eel.expose
  289. def set_stop_gnd(stop_gnd):
  290. if stop_gnd>255 or stop_gnd<0:
  291. error("stop_gnd must be in the range 0-256")
  292. return
  293. if stop_gnd<state["start_gnd"]:
  294. error("start must be lower than stop")
  295. return
  296. if stop_gnd>state["wf_len"]:
  297. error("stop_gnd must be lower than the waveform length")
  298. return
  299. chips[state["selected_board"]].set_stop_gnd(stop_gnd)
  300. update_state()
  301. @eel.expose
  302. def set_wf_len(wf_len):
  303. if wf_len>255 or wf_len<0:
  304. error("wf_len must be in the range 0-256")
  305. return
  306. if wf_len<state["stop"] or wf_len<state["stop_gnd"]:
  307. error("wf_len must be higher than both stop and stop_gnd")
  308. return
  309. chips[state["selected_board"]].set_wf_len(wf_len)
  310. update_state()
  311. @eel.expose
  312. def set_N(N):
  313. N = int(N)
  314. if N > 5:
  315. warning("Note that increasing the Number of waveforms per stabilization loop decreases the speed of the stabilization. We typically just have N=1.")
  316. chips[state["selected_board"]].set_N(N)
  317. update_state()
  318. @eel.expose
  319. def set_step_max(step):
  320. if step>4095 or step<1:
  321. error("step_max must be in the range 0-1")
  322. return
  323. if step<50:
  324. warning("step_max seems low. This may limit the ability to react to fast power fluctuations.")
  325. chips[state["selected_board"]].set_step_max(step)
  326. update_state()
  327. @eel.expose
  328. def set_Gain(*params):
  329. chips[state["selected_board"]].set_Gain(*params)
  330. update_state()
  331. @eel.expose
  332. def set_auto_set_pga(status):
  333. if status not in [0, 1]:
  334. error("auto_set_pga must be set to either 0 or 1.")
  335. return
  336. chips[state["selected_board"]].set_auto_set_pga(status)
  337. update_state()
  338. @eel.expose
  339. def set_input_gain(input_gain):
  340. if input_gain not in [1, 2, 4, 8, 16, 32, 64, 128]:
  341. error("input_gain must be one of [1, 2, 4, 8, 16, 32, 64, 128]")
  342. return
  343. chips[state["selected_board"]].set_input_gain(input_gain)
  344. update_state()
  345. @eel.expose
  346. def set_offset(offset):
  347. if offset>4095 or offset<0:
  348. error("offset must be in the range 0-4095. 2000 corresponds to no offset.")
  349. return
  350. chips[state["selected_board"]].set_offset(offset)
  351. update_state()
  352. @eel.expose
  353. def set_coarse_fine_ratio(coarse_fine_ratio):
  354. if coarse_fine_ratio<10 or coarse_fine_ratio>30:
  355. error("coarse_fine_ratio should be approximately 20.")
  356. return
  357. if coarse_fine_ratio<15 or coarse_fine_ratio>25:
  358. warning("coarse_fine_ratio should be approximately 20.")
  359. chips[state["selected_board"]].set_coarse_fine_ratio(coarse_fine_ratio)
  360. update_state()
  361. # Program state
  362. state = {
  363. "n_boards": 2,
  364. "selected_board": 0,
  365. "box_address": 0x50,
  366. "mode": 0,
  367. "out_of_lock": 0,
  368. "pi_freq": 1,
  369. "board_freq": 0,
  370. "remote_trigg": 0,
  371. "enab_gnd": 1,
  372. "Vlearn": 3200,
  373. "start": 25,
  374. "stop": 100,
  375. "start_gnd": 125,
  376. "stop_gnd": 200,
  377. "wf_len": 200,
  378. "N": 1,
  379. "step_max": 200,
  380. "Gain": 1.0,
  381. "auto_set_pga": 1,
  382. "input_gain": 1,
  383. "offset": 2000,
  384. "coarse_fine_ratio": 20
  385. }
  386. def update_state():
  387. state["n_boards"] = len(chips)
  388. state["box_address"] = adresses[state["selected_board"]]
  389. chip = chips[state["selected_board"]]
  390. state["enab_gnd"] = chip.get_enab_gnd()
  391. state["mode"] = chip.get_mode()
  392. state["out_of_lock"] = chip.get_out_of_lock()
  393. state["remote_trigg"] = chip.get_remote_trigg()
  394. state["Vlearn"] = chip.get_Vlearn()
  395. state["start"] = chip.get_start()
  396. state["stop"] = chip.get_stop()
  397. state["start_gnd"] = chip.get_start_gnd()
  398. state["stop_gnd"] = chip.get_stop_gnd()
  399. state["wf_len"] = chip.get_wf_len()
  400. state["N"] = chip.get_N()
  401. state["step_max"] = chip.get_step_max()
  402. state["Gain"] = chip.get_Gain()
  403. state["auto_set_pga"] = chip.get_auto_set_pga()
  404. state["input_gain"] = chip.get_input_gain()
  405. state["offset"] = chip.get_offset()
  406. state["coarse_fine_ratio"] = chip.get_coarse_fine_ratio()
  407. for l in state:
  408. if isinstance(state[l], np.uint16) or isinstance(state[l], np.int32):
  409. state[l] = int(state[l])
  410. if isinstance(state[l], np.float32):
  411. state[l] = float(state[l])
  412. eel.renderUI(state)
  413. ###################################
  414. ## START THE GUI
  415. ###################################
  416. my_options = {
  417. 'mode': "chrome-app", #chrome-app
  418. 'host': 'localhost',
  419. 'port': 8000 + int(np.random.rand()*1000),
  420. 'size':(660, 605),
  421. #'chromeFlags': ["--start-fullscreen", "--browser-startup-dialog"]
  422. }
  423. eel.init('web')
  424. eel.start('main.html', options=my_options, block=False)
  425. # Detect all boards
  426. import os
  427. import subprocess
  428. import re
  429. chips = []
  430. adresses = []
  431. # TO DO
  432. p = subprocess.Popen(['i2cdetect', '-y','1'],stdout=subprocess.PIPE,)
  433. p.stdout.readline()
  434. for i in range(0,8):
  435. line = str(p.stdout.readline())[4:]
  436. for match in re.finditer("[0-9a-f]+", line):
  437. adresses.append(int(match.group(0), 16))
  438. chips.append(ADUCv2p1(int(match.group(0), 16),True))
  439. print('Found boards', adresses, chips)
  440. eel.renderUI(state)
  441. eel.sleep(5)
  442. update_state()
  443. eel.renderUI(state)
  444. i = 0
  445. while(True):
  446. #eel.renderUI(state) # TO DO
  447. save_waveform() # TO DO
  448. eel.sleep(1/state["pi_freq"])
  449. if(i%100==0):
  450. clean_old_files("data/waveforms/", 1000)
  451. i += 1
  452. print(state)