|  | @@ -25,12 +25,10 @@ def save_waveform():
 | 
	
		
			
				|  |  |  	signal_std = np.std(data[state["start"]:state["stop"]])
 | 
	
		
			
				|  |  |  	wf_number = chip.get_wf_cnt()
 | 
	
		
			
				|  |  |  	timestamp = time.time()
 | 
	
		
			
				|  |  | -	print(wf_number, timestamp, last_wf_number, last_timestamp)
 | 
	
		
			
				|  |  |  	if(last_wf_number>0 and wf_number - last_wf_number>0):
 | 
	
		
			
				|  |  |  		state["board_freq"] = (wf_number - last_wf_number)/(timestamp - last_timestamp)
 | 
	
		
			
				|  |  |  	else:
 | 
	
		
			
				|  |  |  		state["board_freq"] = 0
 | 
	
		
			
				|  |  | -	print(state["board_freq"])
 | 
	
		
			
				|  |  |  	last_wf_number, last_timestamp = wf_number, timestamp
 | 
	
		
			
				|  |  |  	tosave = [wf_number, timestamp, state["start"], state["stop"], state["start_gnd"], state["stop_gnd"], state["input_gain"], state["offset"], signal, gnd, signal_std, gnd_std, state["wf_len"]] + list(data)
 | 
	
		
			
				|  |  |  	np.savetxt("data/waveforms/"+str(int(timestamp*100))+".csv", [tosave], delimiter=",", fmt='%10.5f')
 | 
	
	
		
			
				|  | @@ -399,7 +397,7 @@ state = {
 | 
	
		
			
				|  |  |  	"mode": 0,
 | 
	
		
			
				|  |  |  	"out_of_lock": 0,
 | 
	
		
			
				|  |  |  	"pi_freq": 1,
 | 
	
		
			
				|  |  | -	"board_freq": 0,
 | 
	
		
			
				|  |  | +	"board_freq": -1,
 | 
	
		
			
				|  |  |  	"remote_trigg": 0,
 | 
	
		
			
				|  |  |  	"enab_gnd": 1,
 | 
	
		
			
				|  |  |  	"Vlearn": 3200,
 |